

山岳盛土擁壁の 簡易な耐震性点検法に関する研究

岡村未対1

1愛媛大学工学部助教授 (〒790-8577 愛媛県松山市文京町3) E-mail: okamura@dpc.ehime-u.ac.jp

通常の道路盛土擁壁の設計では耐震性が要求されていないが、山間部の盛土擁壁が崩壊すると復旧に長 期間を要し住民の孤立化を招く.本研究では、新潟県中越地震で崩壊した道路盛土擁壁を調査し、多くの 被害地点において斜面上の擁壁の崩壊メカニズムが擁壁基礎地盤の支持力破壊であることを示した.続い て、既存の道路擁壁の耐震性を簡便に点検する手法として、簡易貫入試験と支持力計算により求めた安全 率で評価する方法を提案した.この方法を用いて被災した擁壁の解析を行ったところ、安全率と擁壁の変 位量に良い相関が見られ、本手法により相対的な弱部を抽出でることが示された.

Key Words : Retaining wall, earthquake, road embankment, bearing capacity

1. はじめに

2004年10月に発生した新潟県中越地震では、山間 部の道路の多くが甚大な被害を受け、交通の遮断に よる山間部集落の孤立化を招いた.孤立化した集落 へ通じる道路のほとんどは、切土および盛土によっ て山肌に建設されたものであった.近い将来に発生 すると言われている東南海、南海地震では、四国や 紀伊半島の山間部を含むほぼそれらの全域で震度が 5強以上と想定されており¹⁾、山間部集落の孤立化が 広域にわたって数多く発生することが考えられる.

通常の道路盛土や盛土を構築するための擁壁の設計では,地震の作用を考慮しないのが一般的である 2³³.これは,盛土構造物の修復性の高さを考慮し, 地震により被災しても短期間で復旧できることを前 提としたものである.しかしながら山間部の道路が 被災すると,次のような理由から復旧に著しく時間 を要することになる.すなわち,

- 山岳盛土の谷側法面を擁壁としている場合, 擁壁が谷に崩落し道路盛土が谷側斜面を滑落 する.このような場合には,盛土の再構築は 容易ではなく,応急的な迂回路の設置も困難 である.
- 一つの道路の延長にわたり複数箇所で崩壊が 生じた場合、復旧のための工事車両は崩壊現 場を通過できないためにアクセス可能な崩壊 現場が限定され、1カ所ずつの復旧工事を余 儀なくされる。

したがって、山間部の道路盛土のように、崩壊す

ると復旧が困難であり、かつ代替ルートが確保され ていない場合には、最低限の緊急輸送路だけは確保 すべく盛土の耐震性を確保することが望まれる.

山岳盛土の地震による被害パターンは、図-1のように3つに大別されよう.すなわち、①盛土部の崩壊、②山側斜面の崩壊による道路閉塞、および③道路全体を巻き込む大規模な山腹崩壊である.②のタイプの崩壊の多くは崩壊土砂量が限定的なことがほとんどであり、比較的短時間での復旧が可能であり、③のタイプは復旧には困難であるが発生頻度は少な

図-1 山岳盛土の被害パターンの大別

表-1 調査地点における擁壁の概要と被害状況

地点	擁壁構造形式	擁壁直高(m)	擁壁天端の変位量(m)	斜面角	基礎-斜面間の	基礎地盤土質
			水平(h),鉛直(v)	(°)	水平距離(m)	
А	ブロック積み	5.1	変状無し	45	3.0	砂質土
В	11	4.0	h:0.3,v:0.1	25	3.0]]
С	11	4.5	h:0.15, v:0.1	25	1.5]]
D-1	11	4.0	h:1.1,v:2.7	20	1.9]]
D-2	11	4.0	h:0.6,v:1.2	20	1.0]]
F-1	11	4.9	v:5m 以上*	30	1.8]]
F-2	11	5.0	h:0.1,v:0.7	25	1.2]]
J	11	4.6	h∶-0.05, v∶0.2	45	0.8]]
K-1	11	4.4	変状無し	40	1.3]]
K-2	11	1.9	h:0.1,v:0.2	30	1.1]]
М	11	5.2	変状無し	35	1.3	粘性土
N-1	11	4.3	v:30m以上*	40	1.2]]
N-2	11	4.3	変状無し	40	2.7	砂質土
P-1	11	3.8	v:30m 以上*	25	1.5]]
P-2	11	3.9	変状無し	25	2.5]]
R	11	5.8	h:0.1,v:0.2	35	1.0]]
S	11	4.8	h:0.3,v:1.0	35	1.6	//
Т	重力式	3.5	v:30m以上*	35	0.7	11

*:表中の太字は,擁壁が斜面を滑落したものを示す

図-2 調查地点位置図

い.①のタイプでの盛土部の崩壊は、集水地形にお ける盛土などが地震による過剰間隙水圧の上昇によ って崩壊するものと、盛土の谷側を押さえるための 擁壁に起因するものに分けられ、何れも復旧が極め て困難なタイプの崩壊であり、特に擁壁の崩落によ る道路崩壊の発生頻度は高い。

山間部の道路盛土の耐震性を確保するためには, 長い延長を有する道路から耐震性の劣る箇所を効率 的に抽出する耐震点検技術が必要である.本研究で は擁壁の崩落による盛土崩壊に焦点を当て,新潟県 中越地震で発生したこのタイプの崩壊現場の調査を 行い,その結果を基に山岳道路擁壁の耐震性点検法 の確立を目的とした.そこでは,道路盛土の点検を 行うことを念頭におき,簡易でかつある程度精度良 く既存擁壁の耐震性を評価できる方法を目指した.

図-3 擁壁の構造形式別施工実績⁴⁾

2. 道路盛土擁壁の被害調査

(1) 調査地点と擁壁の構造形式

新潟県中越地震により被災した山間部の道路盛土 擁壁とそれらの近傍の無被害擁壁の調査を図-2に示 す17地点で行った.調査の主な項目は,盛土および 擁壁の形状・寸法,変位・変形量,および擁壁基礎

図-5 調査地点 F-1, F-2 における被害状況と簡易貫入 試験の実施位置

図-6 F-2 地点における擁壁の被害状況と貫入試験結果

地盤における簡易貫入試験である。簡易貫入試験は, 後述するように擁壁基礎の支持力を評価するために 行ったものであり,調査深度は地盤の支持力破壊領 域の深さを考慮して基礎下1~3m程度とした.これ らの地点は、いずれも本震による震度が6強のエリ アにある県道あるいは市町村道である.表-1に各地 点の擁壁の概要と被害程度をまとめて示す。調査地 点における擁壁のタイプはブロック積み擁壁が17カ 所,重力式擁壁が1カ所である.図-3は平成6年から 平成10年までに我が国で施工された擁壁の構造別割 合を示したものである⁴。これからわかるように, 我が国ではブロック積み擁壁と重力式擁壁が多い. さらに山間部で斜面に建設される擁壁の場合、基礎 地盤の支持力不足の懸念から重力式擁壁は敬遠され る.したがって、表-1は調査した擁壁のタイプに偏 りがることを示しているのではなく、山間部の道路 盛土擁壁では圧倒的にブロック積み擁壁が用いられ ていることを表している.

高さ5m以下のブロック積擁壁および重力式擁壁 の設計は、「建設省土木構造物標準設計」⁴⁾に従っ て設計されることが多い.代表的なブロック積み擁 壁の標準断面を図-4に示す.そこでは擁壁直高と裏 込め(盛土)材の良否によって前面勾配NI(=1:0.3 ~0.5)が決まり,基礎地盤に関する条件が設計結 果に反映されることはないため,地盤調査も行われ ないのが通常である.したがって,これら擁壁の基 礎地盤の安定性に関しては,擁壁毎に大きなバラツ キがあるものと言える.また,これら擁壁の標準設 計断面の設定にあたっては,地震荷重は考慮されて いない.

地点D,N,F,Pでは、被害の大きな擁壁と水平距離 で40m以内のそれらに隣接した被害の軽微な擁壁の 2カ所で調査を行った。このような地点では、地震 動の大きさ、盛土材料、擁壁の緒元はほぼ同じであ ると考えられるので、被害程度の違いは主に擁壁を 支持する基礎地盤条件の違いによるものと見なすこ とができる.

(2) 被害の特徴

調査地点での被害状況の例として、F-1、F-2地点 の写真と盛土の断面図をそれぞれ図-5、図-6に示す。 図-6は近傍の無被害擁壁ののり面勾配,路肩のクラ ック幅およびガードレールの沈下量等から擁壁頭部 の変位量を推定し, 被災前後の擁壁の状況を描いた ものである.図-5のF-1地点から手前側の40m区間 では擁壁が崩落し、幅員のおよそ2/3が完全に失わ れた. 基礎後趾部付近を通る地盤のすべり面が観察 され, 擁壁の崩落は基礎地盤の支持力破壊が原因で あるものと考えられた. F-1地点から先の (F-2地点 を含む)約100m区間では、擁壁は頭部の水平および 鉛直変位が30cm以下であり、路肩のガードレール は大きく変位しているものの路面の変状は、車両の 通行に大きな支障を来すものではない. しかしなが らF-2地点のように比較的被害が軽微であった地点 でも、天端の変位量および傾斜角の実測値から計算 すると擁壁基礎は水平および鉛直方向にそれぞれ 50cmおよび20cm程度変位しており、擁壁の基礎幅 (55cm)の3割以上と大きく変位していることから、

地盤が支持力破壊を生じていることがわかる.

斜面上の基礎では地盤が一旦支持力破壊を生じる と地盤反力が大きく低下する.これは斜面角度が大 きく,基礎と斜面の水平距離が小さいほど顕著とな る.また,擁壁基礎のように鉛直荷重に加えて水 平・モーメント荷重の組合わせ荷重を受けると,破 壊後の地盤反力の低下はより一層顕著となることが 既往の研究で明らかとなっている⁵⁾.したがって, 斜面上の擁壁はカタストロフィックな破壊が生じや すい条件にあるものといえる。

図-5のF-1地点付近では,擁壁基礎が支持力破壊 を起こして変位しているにもかかわらず,背面土は その形状をほぼ保っており,このような箇所が他の 地点でも散見された.これは,F-1地点のすぐ手前 の擁壁部では,擁壁が慣性力による水平力の作用に よって支持力破壊を生じ,さらに盛土が崩壊してい る箇所ではその後の振動によって盛土が崩壊したこ とを示唆するものである.これは,比較的小規模の 擁壁では,不飽和土の見かけの粘着力により,常時 では擁壁がなくても自立することが出来るためであ ると考えられる.

なお、ブロック積み擁壁の被害パターンとしては、 基礎の支持力には問題がなく擁壁の途中高さから擁 壁自体が破壊するものもあるが、道路崩壊につなが ることは比較的少ないので、本研究では対象外とし た.

今回行った調査では、被害の大きな地域において も,道路が長い延長にわたって崩落している箇所は 少なかった.もちろん連続的に崩壊している箇所も 見られたが.多くの地点で一カ所の崩壊延長は20m 程度で,ほとんどの道路区間で崩落箇所の延長は限 られた長さであった.例えば,ある孤立化した集落 (小千谷市)周辺道路の擁壁区間1.5kmの中で擁壁 崩壊箇所の占める延長の割合は5%程度であった. このように見てかなり限定的な範囲で生じる擁壁基 礎の支持力破壊を予測するためには,道路延長に沿 って狭い間隔で耐震点検を行い弱部を抽出する必要 がある.そこで,簡易動的コーン貫入試験を各調査 地点の擁壁基礎地盤で行い,この結果を基に地盤の 支持力を評価し擁壁の安定性を検討した.

3. 擁壁の安定性の検討

(1) 簡易動的コーン貫入試験

簡易動的コーン貫入試験は、5kgのハンマーを落 下高さ50cmで自由落下させ、直径25mmのコーンを 10cm貫入するのに要する打撃回数をN_d値とするも のである.持ち運びが容易で1カ所あたり20分程度 で試験が行える、機動性に優れた試験である.F-2 地点における試験結果を図-5中に併せて示す.この 地点では地表から深度1mまでのN_d値は2以下と小さ く、1m付近では一旦基礎材の影響と考えられる増 加を示しているが、その後2mまでは5程度の小さな 値となっている.

表-1に示した地盤の土質はコーンに付着した土の 観察と周辺部の露出した斜面の観察から判断した。 擁壁基礎の支持力に影響を及ぼすと考えられる基礎 下2m程度までの土質は、地点MとN-1では粘性土で、 それ以外の地点では砂質土であった。

(2) 基礎地盤の支持力に基づく擁壁の安定性評価

a) 地盤強度の算定

簡易動的コーン貫入試験で得られたN_d値の深度分 布から,擁壁基礎底面から60cmの範囲のN_d値の平 均値を用い,以下のように地盤の強度を推定した. ここで60cm範囲の平均値としたのは,支持力に強 く影響する土の範囲を考慮したものであり,基礎幅 と同等の深さ以深に強度の大きな土層が存在しても, これが支持力値に及ぼす影響は小さので⁸⁾,その影 響は無視した.

 $N_d < 20$ の比較的軟らかい砂質土地盤では N_d 値と標準貫入試験のN値との関係が $N_d = (1 \sim 2) N$ の範囲にあり、その平均的な関係として次式が提案されている

$$N = 0.67 N_d \tag{1}$$

また粘性土地盤では N_d 値とコーン貫入試験の先端抵抗 q_c (MPa)との関係として式(2)が提案されている⁶.

$$q_c = N_d / 15 \tag{2}$$

砂質土についてはNと ϕ の関係式⁷⁾から ϕ 'を,粘性土 については次式によって非排水強度*c*_{*i*}を求めた.

$$c_u = \frac{q_c - \sigma_v}{N_{kt}} \tag{3}$$

ここで σ_v は全土被り圧であり、コーン係数 N_{kl} は12とした.

b) 擁壁に作用する外力の算定

浅い基礎の支持力は、基礎に作用する荷重の偏心 量と傾斜角に依存するので、地震時に擁壁基礎に作 用する鉛直荷重、水平荷重、およびモーメント荷重 を算定した.地震時に擁壁に作用する外力を図-7に 示す擁壁の自重W、背面土の土圧合力E、擁壁に作 用する慣性力 k_H ·Wとする.水平震度 k_H を与えれば、 基礎に作用する鉛直荷重、水平荷重、およびモーメ ント荷重が求まり、荷重の傾斜角と偏心量が得られ る.ただし背面土圧の計算では、現行の基準³⁾と同 様に常時の主働土圧係数を用いた.これは図-5のF-1地点について上述したように、擁壁基礎が支持力 破壊には背面土の地震時土圧が寄与していない可能 性があるためである.

土圧の計算では、盛土材料の定数を道路土工指針 に従って ϕ =35°, c=0, 壁面摩擦角は2 ϕ /3とした. 地点DとFで採取した裏込め土(盛土材料)を用いて 実験室で再構成した試料に対して排水三軸圧縮試験 を行ったところ残留摩擦角は34.5°であり、計算で 用いた ϕ は概ね盛土の残留摩擦角に対応したもので ある.慣性力および土圧の計算に用いた水平震度 k_H

図-8 地震時安全率と擁壁天端沈下量の関係

図-9 常時安全率と擁壁天端沈下量の関係

には,道路土工指針³⁾の大規模地震の値(*k_H*=0.20)を用いた.

また、外力の算定では鉛直方向の震度は考慮して いない。

c) 擁壁基礎の支持力の算定

支持力の算定では,通常の水平地盤の支持力に加 えて、前述したように荷重の傾斜・偏心,および斜 面の影響を考慮しなければならない.

荷重の傾斜の影響は,基礎幅を荷重の偏心量に比例して減じる,いわゆる有効基礎幅を用いることにより考慮するのが一般的である.また,荷重の傾斜による支持力への影響は,荷重傾斜角と支持力低減率の関係が提案されており,簡単な図表にとりまとめられている⁷⁾.したがって,b)で求めた外力Fの傾斜角と偏心量のもとでの支持力R'が計算できる. 一方,斜面による鉛直支持力の低減係数は,斜面の角度と基礎から斜面までの水平距離の関数であり, 日下部⁹により図表として与えられている.

これらの荷重の偏心・傾斜および斜面による支持 力の低減は、いずれも水平地盤の支持力に対する低 減を表すものであり、偏心・傾斜荷重を受ける斜面 上の基礎の支持力評価法は確立されていない.最近 の研究¹⁰によると、荷重の偏心が支持力に及ぼす影 響は、斜面でも水平地盤でも大きな差はなく、斜面 の支持力算定でも有効基礎幅が適用できることがわ かっている.また、荷重傾斜による支持力低減係数 は、斜面と水平地盤では異なり、荷重傾斜角によっ ては1~3割程度危険側の評価になる可能性もある が¹⁰、これらについての詳細な検討は今後の課題で ある.本研究では、偏心及び傾斜荷重を受ける水平 地盤の支持力Rを算定し、偏心及び荷重の傾斜がな い場合の斜面による低減係数 μ をこれに乗じて、偏 心及び傾斜荷重を受ける斜面上擁壁基礎の支持力Rとした.

$$R = R' \cdot \mu = \left(\frac{1}{2}\gamma B_e N_\gamma + \gamma D_f N_q\right) B_e \mu \tag{4}$$

ここで、 B_{a} は荷重の偏心により減じた有効基礎幅、 pは地盤の単位体積重量(ここでは18kN/m³とした)、 D_{f} は根入れ深さ、 N_{f} と N_{q} は荷重の傾斜を考慮した支 持力係数である、擁壁前面には、何れの地点におい ても数10cmから1.2m程度の根入れがあるが、この部 分の土はほとんどの地点で N_{d} <2以下と軟らかいの で、擁壁前面の受働土圧抵抗は考慮せず、この土の 自重による上載荷重の支持力への寄与は考慮した。

d)安定性評価結果

このようにして求めた支持力Rと荷重Fの比を安 全率Fsとし,擁壁天端沈下量に対してプロットした のが図-8である.図中の矢印は天端沈下量が5m以上 であったものを示している.天端沈下量は,1m程度 以下のものと5mを超える沈下(斜面を滑落)したも のに二分されることがわかる.沈下量が2.7mのケー ス(地点D-1)は,斜面途中の立木が擁壁の滑落を 防いだものである.これより,斜面上の擁壁の被害 程度は,土のうを積むなどしてある程度の応急復旧 が可能な1m程度以下の被害に留まるか,完全に崩落 するかの2つに大別されることが推察される.

また、図-8では安全率の低下と共に沈下量が増大 している.安全率と被害程度には良い相関があり、 簡易貫入試験と組合わせ荷重を受ける斜面上基礎の 支持力評価法によって算定した安全率が擁壁の耐震 性判定に有効であることがわかる。なお、図-8では 安全率が0.6程度まで低下しても擁壁の被害程度は 比較的軽微であり、安全率=1が破壊と非破壊の境界 値とはなっていない.これは安全率を算定するにあ たって、幾つかの仮定をしているため、安全率が相 対的な耐震性の指標ではあるが、その絶対値の意味 は明確でないためである.

以下に、計算の上での仮定が計算結果に及ぼす影響について考察する.まず、擁壁の地震時土圧に影響する要因では、盛土材料の内部摩擦角と水平震度がある.内部摩擦角は安全側の値として35°を用いており、仮に40°を用いたとしても、解析に用いている常時の主働土圧係数には大きな違いはなく、安全率にはおよそ0.05程度の差しか現れない.しかしながら、主働土圧に地震慣性力 (k_{tf} =0.2)を考慮す

ると,主働土圧係数は0.07から0.38へと増加する. その結果,擁壁基礎に加わる荷重の傾斜角が45°以上となり,ほぼ全てのケースで安全率は0.5以下となり,沈下量と安全率の相関は見られなくなる.

次に、本計算で用いた震度 (k_{H} =0.2) は、現行指 \pounds^{20} で定められている大規模地震相当の震度である が、この値は周辺地域で測定された最大加速度より もはるかにに小さい。計算に用いる k_{H} が安全率に及 ぼす影響を調べるため、 k_{H} =0の常時の安全率を求め、 沈下量に対してプロットしたものを図-9に示す. 図-8との安全率の違いは擁壁の水平方向の慣性力の 有無によるものである. k_{H} =0.2を考慮することによ り、安全率が全体的におよそ1/2程度減少するが、 *Fs*と沈下量の相関関係には図-9と大きな違いは見ら れない.

簡易動的貫入試験のN_d値と土質定数の関係には数 10%程度のばらつきが見られることは知られており ⁶⁾,本研究の計算結果にはその土質定数のバラツキ の影響が含まれている.本研究の計算では,支持力 安全率が地盤定数だけではなく,むしろ斜面角や基 礎から斜面までの距離など測定誤差が小さな要因の 影響を強く受けているので,地盤定数にある程度の バラツキがあっても,本提案手法によって相対的に 耐震性の劣る箇所を抽出することが出来るものと考 えられる.

4. 結論

山間部において道路盛土を支える比較的小規模な 擁壁の地震時安定性について,新潟県中越地震の被 害調査を通じて検討したところ,斜面上の擁壁基礎 は支持力破壊を生じることにより大変形する,いわ ゆる粘り強さのない構造物であり,耐震性の検討に おいては破壊するか否かの判定が重要であることが 明かとなった.道路の膨大な延長を考え,簡易な耐 震点検手法が望まれる.

本研究では,簡易動的コーン貫入試験により地盤 定数を推定し,地震時に擁壁基礎に作用する荷重の 組合わせを考慮した支持力安全率によって擁壁の耐 震安定性を評価した.その結果,安全率と擁壁の鉛 直変位量には良い相関があり,この手法により相対 的な弱部を抽出できることが明らかとなった.

参考文献

- 1) 内閣府: <u>http://www</u>.bousai.go.jp/jishin/chubou/nankai/14/.
- 2) (社)日本道路協会:道路土工 のり面工・斜面安定 工指針, 1999.
- 3) (社) 日本道路協会:道路土工 擁壁工指針, 1999.
- 4) 土木研究所:標準設計, 1970.
- 5) Okamura, M., Mihara, A., Takemura, J. and Kuwano, J.: Effects of footing size and aspect ratio on the bearing capacity of sand subjected to eccentric loading, Soils and Foundations, Vol. 42, No. 4, pp. 43-56, 2002
- 6) 地盤工学会地盤調査法改訂編集委員会:地盤調査の 方法と解説,地盤工学会,2004
- 7) (社)日本道路協会:道路橋示方書・同解説,Ⅳ下 部構造編,2002
- 8) 山口柏樹:土質力学(全改訂),技報堂出版,1984
- 9) 日下部治:斜面上直接基礎の支持力評価に関する計算,土と基礎, Vol.33, No.2, pp.7-12
- 10) 菅野靖幸,岡村未対,堀政理,二神治:組合せ荷重を 受ける斜面上帯基礎の支持力の実験的研究,第40回地 盤工学研究発表会(投稿中),2005

(2005.3.8 受付)

A SIMPLE METHOD FOR EVALUATING SEISMIC FAILURE POTENTIAL OF RETAINING WALLS ON SLOPES

Mitsu OKAMURA

In the design practice of retaining walls for road embankment, in particular for stacked block type retaining walls which have been widely used in Japan, any eartuquake effects have not been taken into account. However, the heavy damages to mountain roads caused by Niigataken-chuetsu EQ clearly indicated nessesity to secure aseismisity of such retaining walls. In this study, the failure mechanism was studied through invesitigation of the damaged and undamaged walls. A simple method to evaluate failure potential of existing retaining walls, in which cone penetration test and bearing capacity calculation are incorpotated, are proposed.