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Abstract

This paper presents an algorithm, based on particle swarm optimisation, to optimise the lane-changing distributions at a freeway
weaving segment using an individual driver advisory. The research applies a microscopic simulation in Aimsun to evaluate the
optimised lane-changing distribution for a one-sided freeway weaving segment. The simulation results show that the proposed
particle swarm optimisation algorithm can be used as a successful optimisation method for the lane-changing distributions. The
individual driver advisory, using the optimised lane-changing distributions, effectively distributes lane changes along the freeway
weaving segment to improve the performance. The evaluation revealed that the proposed strategy has the potential to reduce delay,
to increase traffic speed and smooth traffic flow dynamics.
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1. Introduction

Empirical studies have shown that drivers tend to perform lane changes soon after they enter the weaving segment,
especially under capacity conditions (Cassidy and May, 1991; Kwon et al., 2000; Denny and Williams, 2005; Lee,
2008; Al-Jameel, 2013; He and Menendez, 2016). This behaviour, known as the lane-changing (LC) concentration
problem, causes a bottleneck around the merge gore area which can lead to congestion. Mai et al. (2016) proposed a
C-ITS advisory control strategy that involved an individual driver advisory to distribute lane changes along a freeway
weaving segment to alleviate the LC concentration problem. The individual driver advisory used fixed proportions to
distribute lane changes by weaving vehicles. However, their study did not focus on finding the optimal solution for
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the LC distribution. This paper presents an algorithm, based on particle swarm optimisation, to improve the traffic
performance on a freeway weaving segment by optimising the LC distribution while satisfying the constraints of the
problem.

The objective in an optimisation problem is to find the optimal solution by using some optimisation technique.
Applications of heuristic search algorithms inspired by natural phenomena are rapidly growing in diverse scientific
fields to solve tough optimisation problems. Researchers have successfully applied heuristic algorithms to a wide va-
riety of civil engineering optimisation problems because heuristic algorithms are not problem-specific, do not require
the objective function to be continuous or differentiable (unlike gradient-based optimisation algorithms like the quasi-
Newton method), can incorporate constraints, can search vast spaces of candidate solutions (Gopalakrishnan et al.,
2013). Heuristic algorithms find quality solutions to tough optimisation problems in a reasonable amount of time, but
there is no guarantee that optimal solutions are reached (Yang, 2010).Heuristic algorithms are characterised by some
balance between exploration (global search) and exploitation (local search).

Heuristic algorithms are preferred for problems that require good quality solutions which are easily attained, rather
than the best solutions. A heuristic algorithm is suited specifically for the lane-changing concentration problem be-
cause the individual driver advisory only requires a good quality solution to improve the fitness function. This is more
important than the guarantee of an optimal solution because of the relatively high cost in computational effort, to attain
the best solution, compared to the marginal improvement in the fitness function.

Many modern heuristic algorithms that have been developed for computer science research: for example simulated
annealing, tabu search, genetic algorithms, ant colony optimisation, bee algorithms, differential evolution, particle
swarm optimisation, harmony search, big bang-big crunch, the firefly algorithm, cuckoo search and bat-inspired algo-
rithms.

Nature-inspired algorithms are based on the behaviour of so-called swarm intelligence, which forms the foundation
of heuristics (Yang, 2014). This research focuses on using swarm intelligence models, mainly PSO, to solve the
optimisation problem.

1.1. Particle swarm optimisation

PSO, a heuristic algorithm, has become one of the most widely used algorithms based on swarm intelligence due
to its simplicity and flexibility (Yang, 2014). It is a stochastic search and optimisation technique that has been applied
to many problem domains which are difficult to solve by conventional methods.

The PSO concept, originally introduced by Eberhart and Kennedy (1995), was inspired by the social behaviour of
bird flocking or fish schooling. In PSO, a problem is optimised by iteratively trying to improve a potential solution
with respect to an objective function. It solves a problem by having a swarm of particles, or population of potential
solutions, which are flown in a high-dimensional search space. Each particle has an adaptable velocity, according to
which it flies through the solution space. The movement of the particle is updated according to its own best position
in history, and to the current global best position, which is found by the swarm, at the same time it tends to move
randomly. When a particle finds a location better than any previously found, it updates that location as the new current
best for the particle. The swarm of particles is expected to fly toward an optimal solution through the feasible solution
space.

The original PSO algorithm has two variants: global best, gbest, and local best, lbest, PSO. The global variant,
widely used in literature, is used in this research (Gopalakrishnan et al., 2013). Hence, the following describes the
global best PSO algorithm.

Consider a D-dimensional search space, where the ith particle of a swarm can be represented by a D-dimensional
vector, Xi = (xi1, xi2, . . . , xiD)T . The velocity of the particle can be represented by a D-dimensional velocity vector
Vi = (vi1, vi2, . . . , viD)T . The particle, xi, has a memory of its previously visited personal best position, denoted as
yi = (yi1, yi2, . . . , yiD)T . The social information is the best position found by the swarm, referred to as ŷ. Let t denote
discrete time steps or the iteration number. Each particle updates its position based on its own best experience, the best
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swarm overall experience, and its previous velocity vector, according to equations 1 and 2 (Eberhart and Kennedy,
1995).
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where j = 1, 2, . . . ,D; i = 1, 2, . . . , ns and ns is the size of the swarm. The stochastic nature of the algorithm is
determined by rt

1 j, rt
2 j ∼ U(0, 1), which are random values, sampled from a uniform distribution in the range [0, 1].

These random numbers are scaled by acceleration coefficients c1 and c2, called cognitive and social parameters,
respectively, where 0 ≤ c1, c2 ≤ 2. The performance of each particle is measured by the objective function, which is
related to the problem under consideration. The inertia weight ω was added by Shi and Eberhart (1998) to improve the
convergence rate. Gopalakrishnan et al. (2013) added a maximum velocity parameter, vmax, to improve the efficiency
of the PSO in the region of the optimum by allowing a finer step-size velocity.

The termination criterion for the PSO can be one of the following: a fixed number of iterations, the maximum
number of iterations without improvement, and the minimum error requirement in the objective function.

The swarm behaviour in basic PSO is influenced by the number of particles, the inertia weight, the maximum
velocity, and the acceleration coefficients to modify the velocity. These parameters are considered for the speed,
convergence and efficiency of the algorithm. The influence of the previous velocity on the current velocity, which
affects the trade-off between exploration (global search) and exploitation (local search), can be controlled by the
inertia weight, ω. A larger inertia weight facilitates the exploration; a smaller inertia weight tends to facilitate the
exploitation of the current search area. Hence, a suitable selection of the inertia weight achieves the right balance
between exploration and exploitation (Shi and Eberhart, 1998).

There are several key advantages of PSO over other optimisation techniques: derivative-free algorithm unlike many
conventional techniques, only a few parameters to adjust, ability to handle objective functions with stochastic nature,
ease of implementation, does not require a decent initial solution to start its iteration process (AlRashidi and El-
Hawary, 2009). Since its original development, PSO has been modified into many different variants (Gopalakrishnan
et al., 2013). As a heuristic algorithm, PSO does not guarantee to find the optimum solution; therefore, the practitioner
may need to modify the algorithm to work efficiently for a given problem.

1.2. Particle swarm optimisation: traffic and transportation engineering applications

Swarm intelligence techniques, including PSO, have been successfully applied for transportation and traffic engi-
neering applications, including transportation network design, traffic flow forecasting, traffic control, traffic accident
forecasting and vehicle routing problem (Teodorović, 2008; Gopalakrishnan et al., 2013).

Srinivasan and Seow (2003) proposed a new approach to automatic incident detection on traffic highways using
PSO. Their research used PSO to train a neural network in place of back-propagation. The simulation results show
that PSO performed better than the back-propagation algorithm.

The vehicle routing problem with time windows accounts for a significant portion of the work of many distribution
and transportation systems. Zhu et al. (2006) developed an algorithm, based on the principles of PSO, for the vehicle
routing problem. The authors tested the proposed approach on a few numerical experiments and compared the results
with the results obtained by the genetic algorithm approach. The PSO algorithm discovered optimal solutions in 82%
of cases, while the genetic algorithm discovered optimal solutions in 36% of cases. The simulated results indicated
that the PSO algorithm could efficiently and quickly achieve a resolution to the vehicle routing problem.
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Traffic flow forecasting is a key problem in the real-time adaptive control of urban traffic. Zhao et al. (2006)
proposed the radial basic function and neural network based forecasting model for two adjacent intersections. They
used PSO algorithm to optimise the hidden layer and the output layer weights of the forecasting model. The proposed
approach enhanced the training speed and accuracy of the traffic flow forecast.

Chen and Xu (2006) proposed a PSO algorithm for solving the traffic optimisation problem by optimising the
average delay and the average number of stops for adjacent junctions. The simulation results showed that the delay
per vehicle could be substantially reduced under constant traffic demands and time-varying traffic demands.

Dong et al. (2006) proposed a chaos-PSO algorithm, which is a modified PSO algorithm to allow chaotic searching,
used to optimise the signal timing for urban area traffic control. The experimental results for traffic networks consisting
of nine intersections showed that signal timing optimisation based on chaos-PSO could reduce average delay per
vehicle by 41.6%.

Wang et al. (2007) used a modified PSO for optimal coordination of the traffic signals in a simulated artery system.
Peng et al. (2009) introduced isolation niches embedded in PSO for traffic lights control. The proposed algorithm

was used to optimise the time of green and red lights to make the average waiting time for vehicles shorter. The
simulation results showed that it was a valid method.

Lianyu et al. (2009) proposed a method based on a quantum-behaved PSO algorithm to obtain optimal origin–
destination (OD) matrix calculation used in urban traffic management and control.

Kachroudi and Bhouri (2009) proposed an urban traffic control strategy that uses traffic lights to regulate private
vehicle traffic and the progression of public transport vehicles. The authors used a modified PSO algorithm to optimise
the multi-modal traffic responsive strategy on a large virtual urban network.

Cao et al. (2010) proposed a two-direction green wave control algorithm of the traffic signal based on PSO. The
PSO optimised the signal split and the phase offset. The simulation result, using traffic data collected from Liansheng
Road and Dongguan City, showed the method significantly reduced average delay and average queue length.

Lertworawanich (2012) proposed a PSO algorithm for the sequential highway network recovery problems. The
study used a model to determine the optimal highway network restoration sequence after disasters.

These results from research have shown that the PSO is a promising technique capable of solving complex traffic
and transportation problems. As there have been few studies relating to the use of PSO in freeway traffic control, this
research aims to use PSO algorithm in the lane-changing optimisation problem in a freeway weaving segment.

In a previous study by Mai et al. (2016), the distribution percentage was fixed, and optimal solutions were not
explored using sophisticated optimisation techniques. This study involves particle swarm optimisation to seek optimal
solutions for the LC advisory distribution.

A methodology for the optimisation of the LC advisory distribution is proposed in this section. The proposed
algorithm is discussed in further detail below.

Table 1 summarises the notations used in this section.
The basic PSO algorithm (summarised in algorithm 1) needed to be modified to handle the constraints in the

optimisation problem. Accordingly, section 2 provides the proposed extension to the basic PSO.

2. Proposed PSO

The PSO algorithm was modified to generate solutions for the LC advisory distribution. Genetic algorithms were
attempted for this problem, but the crossover and mutation functions proved difficult when dealing with the given
constraints. Conversely, PSO could iteratively improve each decision variable in the potential solution while remaining
within the feasible search space. Hence, a PSO algorithm was proposed for this problem because the fitness evaluations
could be used to guide the search directly (Paquet and Engelbrecht, 2003). Because the problem could be defined as a
continuous optimisation problem with constraints, PSO was a suitable algorithm.

The proposed PSO, for a constrained optimisation problem, has been adapted to search within the feasible solution
space. Constraints, in heuristic algorithms, may cause the search to compromise on the optimal solution by just seeking
a feasible solution Coello and Montes (2002). So the PSO algorithm needs a mechanism to deal with the constraints
of the problem while maintaining its focus on optimisation.

PSO proved to be a useful algorithm to optimise unconstrained functions; however, if some constraints were added
to the objective function, the problem became more complicated (Paquet and Engelbrecht, 2003). A modified PSO
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Table 1. Notations of parameters and variables
PSO parameters
f (x) Function to minimise
S Total number of particles in the swarm
D Number of dimensions in a particle
i Index for particle in swarm, S
j Index for dimension in particle, xi

xi Particle representing a potential solution, xi ∈ <
n

xlb Lower bound limit for xi j

xub Upper bound limit for xi j

ω Inertia weight, ω = 0.7
φp Cognition parameter, φp = 1.4
φg Social parameter, φg = 1.4
vi(t) Velocity vector, vi ∈ <

n

vc Velocity clamping, vc = 0.2

Objective Function
S Minimum detector speed
M Missed turns penalty factor

Algorithm 1: The pseudocode of basic particle swarm optimisation
Input: PSO parameters
Result: The best particle found by the algorithm.

1 for each particle i = 1, . . . , ns do
2 Initialise particle’s position and velocity
3 end
4 while maximum iterations or stopping criteria is not met do
5 for each particle i = 1, . . . , ns do
6 Calculate fitness value
7 if the fitness value is better than the best fitness value (pbest) in history then
8 pbest = fitness value
9 end

10 end
11 Choose the particle with best fitness value of all the particles as the gbest

12 for each particle i = 1, . . . , ns do
13 Calculate particle velocity according to equation 1
14 Update particle position according to equation 2
15 end
16 end

algorithm was developed specifically to include the constraints in the optimisation problem. The following sections
outline the modifications to the basic PSO.

2.1. Solution representation

To optimise the LC-advisory distribution, the potential solution must be encoded in a suitable form, such as a one-
dimensional array jointly comprising the RF and FR LC advisory distributions. Figure 1 depicts a simple potential
solution.
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RF FR
xRF1 xRF2 xRF3 xRF4 xRF5 xRF6 xRF7 xRF8 xFR1 xFR2 xFR3 xFR4 xFR5 xFR6 xFR7 xFR8

Fig. 1. Solution representation

2.2. Co-evolutionary optimisation

A decomposition approach was implemented to improve the potential solution iteratively. The proposed PSO im-
proved the potential solutions by improving the lane-changing advisory distribution made up of the RF and FR distri-
butions.

Figure 2 provides an example of the steps for this co-evolutionary optimisation approach. Assume there is a swarm
size of ten particles, each with 16 decision variables, each column representing one dimension (one decision variable);
the swarm of solutions (particles) will be a matrix of D × S (16 × 10), as shown in step 1. In the matrix, each
row represents one solution (particle), the columns represent the set of decision variables. The initial population is
randomly generated within the predefined constraints.

The set of decision variables is divided into the RF and FR subset arrays in step 2; these are denoted by the yellow
and green colour, respectively. The size of each subset is D/2 (16/2 = 8), that is, each subset contains 8 decision
variables represented by columns and ten particles (solutions) represented by rows.

The solution vector, created in step 3, is used for the fitness calculation process. The solution vector contains two
parts selected from the created subsets, as shown in step 3. In this example, the RF distribution is selected from the
first subset array; the FR distribution is selected from the second subset. Each part represents the best solution in
its subset. For example, after an iteration, the best solution in the first subset is Individual 5 (highlighted by a black
colour), which is used to represent the first part of the solution vector, and Individual 2 from the second subset is used
to represent the second part of the solution. Every particle (individual) in a subset is evaluated by combining it with
all the best individuals in the solution vector. That is, the solution vector is fed into the objective function for fitness
calculation. This is the co-evolutionary process for the PSO algorithm. For example, to calculate the fitness values of
all particles in the first swarm, each particle from the first subset is sent to be used as the first part, combined with the
second part of the FR subset, and then it is sent to the fitness function to calculate the fitness value of this particle. The
same process is repeated for the RF subset. The parts – the best individuals in each subset of the solution vector – are
updated during the optimisation process.

The optimisation process (PSO) is called in step 4 to solve each subset separately. Each PSO operates on each
subset of solutions and, during the optimisation process of PSO, the fitness value of the newly generated solution are
calculated by sending it into the solution vector. The same process is repeated for the second subset.

Figure 3 shows the PSO cycle used to solve the two subsets (denoted as Swarm 1 and Swarm 2). In the first cycle,
the PSO process for Swarm 1 is executed, while the representative (global best) from Swarm 2 is sent to form the
second part of the solution vector. During the first cycle, the PSO sends each particle into the solution vector and
obtains the fitness value. The first cycle will terminate after all particles in Swarm 1 have been evaluated. The search
then executes the second cycle to optimise Swarm 2 and uses the representative (global best) from Swarm 1 in the
solution vector. Once the second cycle terminates, the search repeats the cyclical process. The process iteratively
improves the search for the best solution by updating the current best particle of each swarm.

2.3. Initialisation

The potential solutions were randomly initialised within the feasible domain. The particle’s position was initialised
using equation 3; it was then transformed within the feasible domain using equation 4.

xi j = xlb + ri j × (xub − xlb), ∀ j = 1, . . . , nx, ∀i = 1, . . . , ns (3)
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Fig. 2. Co-evolutionary optimisation method

where ri j ∼ U(0, 1) and xi j is the position of x for j in nx dimensions and i in ns particles. The random variable, ri j,
is uniformly distributed between 0 and 1. The lower and upper bounds of position xi j are xlb and xub, respectively.

x′i j =
xi j∑nx

j=1 xi j
, ∀ j = 1, . . . , nx, ∀i = 1, . . . , ns (4)
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where x′i j is the transformed position, within the feasible space, of x for j in n dimensions and i in S particles. For all
j in n dimensions, the position is divided by the sum of values in particle i. This post-processing method was used to
initialise positions within the feasible domain.

2.4. Objective function

The problem can be defined as a constrained numerical optimisation problem that seeks to find x, which minimises
f (x). This section describes the objective function formulation. The proposed PSO algorithm inputs the LC advisory
distribution, x, into Aimsun, which outputs the fitness evaluation (see figure 4). The problem will be optimised by
iteratively trying to improve a potential solution for the objective function.

In this work, the objective function consisted of two parts: speed and missed turns. The speed was measured in the
conflict area of the weaving segment, where most of the turbulence typically occurred due to merging and diverging
traffic streams. In this study, the auxiliary lane and lane 3 experienced the most LC turbulence between merging
and diverging vehicles; consequently, speed along these lanes was used as an indicator of traffic flow dynamics,
how smoothly vehicles drove through the segment. The speed was measured by detectors that were spaced at 10-m
intervals. This study used 1-minute aggregation for all detector measurements. The detector with the minimum speed
measurement would represent the point where speed drop was most significant. Denny and Williams (2005) found
that the speed would be the lowest close to the merge gore areas where the maximum interaction between merging
and diverging vehicles occurred because of the bottleneck formation. Hence, regarding the objective function, it was
pertinent to increase the minimum speed and to reduce speed drop caused by a LC concentration. The minimum speed,
measured at a detector, would be substituted into the objective function.

Missed turns occurred when a weaving vehicle was unable to perform its required lane change before the end of
the segment; thus, missing its desired turn or exit leg. This tended to occur when vehicles were assigned a section
close to the end of the diverging point, and no suitable gap was found to change lanes. This is undesirable for drivers
and should be avoided. Hence, in this study, missed turns have been penalised by a factor, M, shown in equation 6.

The LC distribution was optimised based on the objective function, summarised in equation 5. The free-flow speeds
for the freeway and on/off ramps were 100 km/h and 80 km/h, respectively.

min f (x) =
1
S

+ M (5)
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where f (x) is the objective function for a given LC distribution, xi, S is the value derived from the speed detector
measurements, and M is the penalty factor for the number of missed turns. M is a weighted penalty factor that is
expressed as:

M = N + m2 (6)
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where N is a user-defined constant and m is the number of missed turns. The number of missed turns, m, is defined
as the number of vehicles that are unable to find a gap in time to proceed to their desired exit. The factor has been
squared to increasingly penalise this undesirable outcome.

The proposed PSO was used to improve the LC concentration problem by optimising the LC advisory distribution.

2.5. Constraints

The optimisation problem includes both boundary and summation constraints. These set of constraints is imposed
by conditions that the variable, x, must satisfy to find a feasible solution. These constraints are presented in equations
7 and 8.

nx∑
j=1

xi j = X, ∀i = 1, . . . , ns (7)

where X is the value for feasible solutions, as defined by the linear constraint on the LC-advisory distribution.

xlb ≤ xi j ≤ xub, ∀ j = 1, . . . , nx, ∀i = 1, . . . , ns (8)

where xlb and xub are the lower and upper bound values, respectively.

2.6. Velocity

The basic PSO algorithm updated the position of its particles with a velocity equation that was unconstrained. A
constraint handling mechanism was used to guarantee a feasible solution.

The basic velocity equation was implemented, then a constraint-preserving method was applied to ensure that
the particle’s position satisfied the constraints. In this process, where decision variables have violated the boundary
constraint, the violation was discretely distributed across dimensions which may satisfy the boundary constraint.

Velocity clamping was also implemented to control the exploration of particles within the boundary constraints. If
a particle’s velocity exceeded the specified maximum velocity, the particle’s velocity was set to the maximum velocity
(Engelbrecht, 2007).

2.7. Position

Based on the calculated velocity, the updated position remains within the feasible domain. The positions of all
particles are updated using equation 2.

2.8. Termination criteria

Iterations of the algorithm are executed until a stopping condition is satisfied. In this work, the criterion was set to
a maximum of 50 iterations.

3. Case Study

This section covers the microscopic traffic simulation set-up, including the network configuration and simulation
settings; the performance indicators used for evaluation; and finally, the results and discussions.
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(a) M60 Motorway aerial image

(b) M60 Aimsun network

Fig. 5. M60 Motorway test bed

3.1. Simulation test bed

Traffic simulation has been used to evaluate the application of the C-ITS lane-changing advisory and the imple-
mentation of the optimisation algorithm.

The model was built using a commercially available microscopic traffic simulation software, AIMSUN (advanced
interactive microscopic for urban and non-urban network), which was developed by Transportation Simulation Sys-
tems (TSS) in Spain (Barceló, 2010). Aimsun contains a microscopic simulator and offers an API with its microsimula-
tion software. This study used the API, which enables Aimsun to interface with external applications, the development
language Python, and version 8.1.5 of Aimsun.

The simulation period is 15 minutes, with a 10-minute warm-up period. Each test scenario runs 20 replications to
capture the stochastic variation in traffic flow. The average of the 20 simulation runs was used for output analysis.

An empirical study, by (Al-Jameel, 2013), examined the characteristics of driver behaviour in weaving segments
using field data extracted from video recordings of seven motorway weaving sites. This study used the existing net-
work based on the M60 Motorway (Manchester City, UK). This segment was coded in a previous study by Mai et al.
(2016).

The network, a short weaving segment with a length of 400 m, has a width of four continuous lanes: three freeway-
to-freeway lanes and a one-lane, left-side on-ramp, followed closely by a one-lane, left-side off-ramp. The two ramps
are connected by a continuous freeway auxiliary lane. The configuration, defined as a one-sided weaving segment,
requires no more than two completed lane changes. The speeds are coded as 100km/h and 80km/h for the freeway and
ramp sections, respectively. The geometry of the weaving segment is shown in figure 5 (considering left-hand side
traffic direction).

The demand data for the weaving segment were taken from study by Al-Jameel (2013). The model, which consid-
ered only cars in its traffic composition, had the following demand flow rates:

• FF demand flow: 5300 veh/h

• RF demand flow: 900 veh/h

• FR demand flow: 900 veh/h

• RR demand flow: 100 veh/h

The model calibration and validation processes were undertaken in a previous study by Mai et al. (2016). In their
study, they calibrated the lane-changing model by adjusting the ‘distance to zone’ parameters, which represented the
lane-changing motivation characteristics. Their model, which uses the observed data from an empirical study by Al-
Jameel (2013), calibrates and validates the high lane-changing concentration problem to represent weaving behaviour
accurately. Hence, their model can be used reasonably for a comprehensive analysis of different test scenarios. Table
2 lists the parameters describing the weaving segment.
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Table 2. Weaving segment parameters
vFF = freeway-to-freeway flow rate in the weaving segment (veh/h)
vRF = ramp-to-freeway flow rate in the weaving segment (veh/h)
vFR = freeway-to-ramp flow rate in the weaving segment (veh/h)
vRR = ramp-to-ramp flow rate in the weaving segment (veh/h)
vW = weaving demand flow rate in the weaving segment (veh/h), vW = vRF +

vFR

vW = weaving demand flow rate in the weaving segment (veh/h), vNW = vFF +

vRR

v = total demand flow rate in the weaving segmnet (veh/h), v = vW + vNW

N = number of lanes within the weaving segment, N = 4
L = length of the weaving segment (m), L = 400
RF-ratio = ramp-to-freeway volume ratio, vRF/vW

3.2. Performance indicators

Performance indicators, or measures of effectiveness, need to be carefully chosen to evaluate the weaving segment.
Average speed is commonly used as an operational indicator; however, Cassidy and May (1991) found that it does
not reliably reflect operational quality in a weaving segment. Cassidy et al. (1989) observed that speed appears to be
insensitive to low and moderate conditions. Denny and Williams (2005) found that the speed would be the lowest close
to the merge gore areas, where the maximum interaction between merging and diverging vehicles occurred because of
the bottleneck formation. The speed would increase once the vehicles moved through the bottleneck location. Hence,
speed will not be used as an operational performance indicator in this research. Instead, speed will show the traffic
flow dynamics, how smoothly drivers travel through the weaving segment and whether the LC concentration problem
has been alleviated.

Detectors, spaced at 10m intervals, collected speed measurements. This research used 1-minute aggregation for all
detector measurements. The detector speed measurements can be used to show the speed profile along the weaving
segment and to plot the speed contours.

Two performance indicators were used to evaluate the weaving segment and to compare the optimised case and the
base case: average vehicular delay and time savings.

Aimsun recorded the average delay, calculated as the difference between the actual travel time and the free-flow
travel time. The free-flow travel times of the mainline vehicles (FF and FR) and the on-ramp vehicles (RF and RR)
were calculated at speeds of 100 km/h and 80 km/h for the freeway lanes and ramps, respectively. For mainline
vehicles, the actual travel time was recorded from 500 m upstream of the merge gore to downstream of the weaving
segment. For on-ramp vehicles, the travel time is recorded from 130 m from the merge gore to downstream of the
weaving segment. The unit of average delay time was measured in seconds per vehicle (s/veh). The time saving
(s/veh) was used, as another performance indicator, to indicate the travel time savings achieved by the advisory control
strategy.

4. Evaluation of the proposed PSO algorithm

This section gives an example that demonstrates the performance of the proposed PSO.
The proposed PSO has been modified to handle the constraints of the problem; however, the input parameters are

the same as those of the basic PSO.
In all experiments, the inertia weight, ω, was set to 0.7, while the values of φp and φg were set to 1.4. When

comparing the inertia weights and constriction factors in PSO, Eberhart and Shi (2000) found that these values gave
acceptable results. The velocity clamping (vc) used was 0.2 (higher values were tested; however, this value provided
the best results).

The objective function was defined in section 2.4. Function evaluations were performed by passing the potential
solution, x, into Aimsun and obtaining a fitness value, f (x). The test example minimises equation 5, subject to the
constraints in equation 7.
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Table 3 lists the swarm sizes tested to evaluate the performance proposed PSO.

Table 3. Proposed PSO test runs
Run Number of particles
Run A 10
Run B 20

Figure 6 shows the best fitness values (averaged over five simulations). The results show how the proposed PSO al-
gorithm converges near a local minima. Run A converges after approximately 40 iterations, whereas Run B converges
after 30 iterations.

Fig. 6. Proposed PSO results

Table 4 shows the best fitness values at the final iteration (over five simulations). The table also shows the maximum
and minimum fitness values at the final iteration, over five simulations. In this example, the results show that the swarm
size has a marginal difference to the final fitness value. Hence, to save on computational time, a swarm size of ten was
used for all simulation runs.

Table 4. Fitness values
Proposed PSO Run A Run B
Average 67.31 66.14
Maximum 71.15 73.26
Minimum 63.18 59.79
Standard Deviation 2.78 5.33

The test example was also used to evaluate the effect of the penalty factor. Initially, the penalty factor was set to
zero, meaning that missed turns were not punished in the objective function. The results were as expected, showing
that the best LC advisory distribution did not advise vehicles in time to allow them to execute their desired lane
change; an average of 25 vehicles missed their exit. When the penalty factor was applied to the objective function,
there were no missed turns for the best LC advisory distribution. The penalty factor is therefore imperative to the
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objective function, to avoid vehicles missing their exits. In this study, the sensitivity for the penalty factor was not
investigated.

The results demonstrate that the proposed PSO algorithm can be reasonably used to optimise the LC advisory
distribution.

4.1. Simulation results and discussion

The proposed PSO algorithm found the best LC-advisory distributions. The PSO code was executed using Spyder
(The Scientific PYthon Development EnviRonment) on an Intel R© CoreTM i7 2.50 GHz processor with 8.0 GB RAM,
running on Windows 10, 64-bit Operating System. The computing times for each PSO experiment was approximately
six hours. There was no focussed attempt to improve the efficiency of the algorithm for this study.

The best LC advisory distribution, obtained from the proposed PSO algorithm, will be compared with the base
case, with no control strategy. To test the strategy, the results are evaluated between the following two cases:

• Base case: no control

• Optimised case: individual driver advisory control strategy (optimised LC advisory distribution)

The base case assumes no control strategy. The LC behaviour is governed by Aimsun’s LC model using the cali-
brated LC parameters. The base case was used as a benchmark for comparison.

The advisory control strategy divides the 400-m weaving segment into eight equal 50-m sections. The RF and FR
vehicles are assigned a section, from which they can begin a lane change. In the optimised case, the best LC advisory
distribution, found by the proposed PSO algorithm, is applied to the individual driver advisory control strategy.

4.2. Performance evaluation

The test bed, described in Section 3.1, was used as an example to evaluate the performance of the proposed PSO
algorithm in optimising the LC advisory distribution. Section 3.1 summarised the traffic demand used for the test case.

Table 5 shows a comparison between the average delay time per vehicle (s/veh) in the base case and the optimised
case. The optimised case shows a substantial delay improvement of 30% and 34% for the FF and FR movements,
respectively. The delay improvement was 8% and 1% for the RF and RR movement, respectively. On average, for all
movements per vehicle, delay significantly improved by 28%.

Table 5. Average delay comparison between base case and optimised case
Movement FF FR RF RR Average
Traffic volume (veh) 5300 900 900 100
Expected travel time (s/veh) 52.9 47.1 43.0 37.1
Delay in base case (s/veh) 12.8 16.5 9.8 5.2 8.8
Delay in optimised case (s/veh) 8.9 10.8 9.0 5.1 6.3
Improvement from base case (%) 30 34 8 1 28
Significance∗ 0.000 0.000 0.000 0.787

*The delay difference is significant at the 0.05 level

The t-test was performed to examine whether the delays for the base case and the optimised case were statisti-
cally different. The t-test showed that the optimised LC advisory significantly reduced delay for the FF, FR and RF
movements in the weaving segment. The difference in delay for the RR movement was not significant.

The average speed over distance was used to show the location of speed drop caused by the LC concentration
problem. Figures 7(a) and 7(b) shows the speed over the auxiliary lane and lane 3 distances, respectively. As clearly
demonstrated in both graphs, the speed profile from the optimised case shows a considerable reduction in speed drop
near the merge gore, which implies that lane changing was effectively distributed along the weaving segment. The base
case speed profile shows that speed increases after the speed drop, as vehicles move through the bottleneck location.
It is more desirable, with respect to the operational performance, to have a smoother speed curve. Regarding traffic
safety, crashes are more likely to occur during high deceleration (high-speed drop) and less likely to occur during
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constant speed (Lee et al., 2006). A higher speed difference increases the crash risk, as drivers may have a rear-end
crash if distracted or unable to react in time (Wang et al., 2015). Hence, a smoother traffic speed dynamic, which was
achieved by the optimised case, is more desirable.

(a) Speed on auxiliary lane

(b) Speed on lane 3

Fig. 7. Speed profile on critical weaving lanes

It can be observed from the simulation analyses that the advisory control strategy, which uses the best LC advisory
distribution found by the proposed PSO algorithm, improves the minimum speed at the bottleneck location. This
indicates that the proposed algorithm and objective function can be used to optimise the LC advisory distribution and,
hence, to improve the operational performance of the weaving segment.
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4.3. Impact of different OD demands

This section investigates the impact of different OD demands on the LC distributions. The criteria for OD demand
selection, for each scenario, were that the:

• maximum weaving flow of either RF or FR does not exceed 1260 veh/h

• maximum number of passenger cars in the weaving segment is 2200 veh/h/lane.

The tests were conducted using five different OD demands, as shown in table 6. The five OD demands have different
RF-ratios, where the FF, RR and total weaving volumes remained the same as in section 4.1. The level of service
(LOS) in each scenario was E, according to HCM 2010, chapter 12 (TRB, 2010), which indicates that the weaving
segment is approaching congestion – where the demand flow rate exceeds the capacity of the segment. HCM 2010
(TRB, 2010) does not distinguish LOS for different RF-ratios.

Table 6. Different demand setting (veh/h)
Test vRF vFR vFF Total weaving vRR RF ratio
A 540 1260 5300 1800 100 0.3
B 720 1080 0.4
C 900 900 0.5
D 1080 720 0.6
E 1260 540 0.7

The proposed algorithm was used to optimise the LC advisory distribution for the different OD demands. PSO,
considered a heuristic algorithm, does not guarantee a unique solution for the optimal LC advisory distribution. How-
ever, the optimised LC advisory distribution aims to change the behaviour of the weaving vehicles to alleviate the LC
concentration problem by better utilising existing infrastructure and thereby improving the operational performance
of the weaving segment.

Figures 8 and 9 show the performance improvement in lane 3 and the auxiliary lane, respectively. These figures
consist of sub-figures, in which the RF-ratio increases from bottom to top, and the base case and optimised case are
shown on the left and right, respectively. For each sub-figure, the horizontal and vertical axes represent the distance
(m), from the merge gore, and time (min), respectively. The shading illustrates the average speed measured over
time and distance; the darker shade represents slower speeds and the lighter shade, faster speeds. The following
observations have been made from figures 8 and 9:

1. Overall, the optimised case, in each scenario, has a lighter shade in the contour plots, which represents faster
speeds along the weaving segment in lane 3 and auxiliary lane, relative to the respective base case.

2. The bottleneck location in the base case, represented by the dark band concentrated near the merge gore, is alle-
viated in the optimised case. In all optimised cases, the speed is more smoothly distributed across the weaving
segment.

3. The gradient of the contours are less steep in the optimised cases than that in the base cases, where the contours
are concentrated near the merge gore.

4. In the base case, the speed decrease near the merge gore, caused by the lane changing concentration problem,
progressively becomes more severe as the RF-ratio increases.

5. The optimised cases perform better in smoothing the speed over the weaving segment. The contour plots demon-
strate that the optimised LC advisory considerably improves how smoothly drivers travel through the weaving
segment.
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Fig. 8. Contour speeds of lane 3



18 D. Sulejic, N. Sabar, E. Chung / Transportation Research Procedia 00 (2018) 000–000

0.7

0.6

0.5

0.4

0.3

R
F-

ra
tio

Base case Optimised case
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4.4. Application domain analysis

This section identifies the application domain of the optimised LC-advisory distribution. The LC-advisory dis-
tribution was optimised for each scenario. The executed lane changes of weaving vehicles will be analysed for the
optimised LC advisory to observe what effect the strategy has on drivers. Before this analysis, the number of lane
changes, per section, is examined for the base case (see in table 7).

Table 7. Lane-changing distribution (Base case)
R

F-
ra

tio

0.7
RF 882 302 50 13 0 0 0 0
FR 378 124 27 5 0 0 0 0
Total 1260 427 77 18 0 0 0 0

0.6
RF 594 400 54 11 0 0 11 0
FR 432 223 43 7 0 0 0 0
Total 1026 623 97 18 0 0 11 0

0.5
RF 378 432 72 9 0 9 0 0
FR 495 324 63 9 9 0 0 0
Total 873 756 135 18 9 9 0 0

0.4
RF 230 403 72 7 0 0 0 0
FR 626 356 76 11 0 0 0 0
Total 857 760 148 18 0 0 0 0

0.3
RF 162 308 59 5 0 0 0 0
FR 806 340 76 13 13 0 0 0
Total 968 648 135 18 13 0 0 0

1 2 3 4 5 6 7 8
Section

From the LC distributions in the base cases, the following observations have been made:

1. The majority of lane changes occur in the first two sections (0-100 m) of the weaving segment.

2. The dominant weaving demand flow movement dominates the number of lane changes in the first segment (0-50
m).

3. The last five sections (150-400 m) of the weaving segment are severely underutilised in all scenarios.

In contrast to the base case, the optimised LC advisory aims to change the LC behaviour of weaving vehicles
to achieve better utilisation and to improve the performance of the weaving segment. The simulation records the
executed number of lane changes for the optimised LC advisory (see table 8). The number of lane changes per section
is recorded for RF and FR vehicles.

Table 8. Lane-changing distribution (optimised case)

R
F-

ra
tio

0.7
RF 88 139 340 239 63 113 202 76
FR 235 207 72 18 5 2 1 1
Total 323 345 412 257 68 116 203 76

0.6
RF 108 184 43 119 140 184 227 76
FR 301 226 53 34 29 30 31 16
Total 409 410 97 153 170 213 257 91

0.5
RF 13 68 88 135 230 233 107 26
FR 271 216 146 108 81 54 20 4
Total 284 285 235 242 311 287 127 30

0.4
RF 126 246 119 57 63 69 29 12
FR 393 204 108 56 105 84 60 72
Total 519 449 227 113 167 153 89 83

0.3
RF 59 146 92 65 49 54 54 22
FR 542 202 76 113 88 101 88 50
Total 601 347 167 178 137 155 142 72

1 2 3 4 5 6 7 8
Section

From the LC distributions in the optimised cases, the following observations were made:

1. The number of lane changes for weaving vehicles are distributed across all sections of the weaving segment.
This indicates that the entire length is being better utilised for LC activity, compared to the base case where it
is concentrated in the first two sections.
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2. The maximum number of lane changes in a section is considerably lower than that in the base case. This
indicates that the LC concentration problem has been alleviated; consequently, LC has been distributed across
all sections to avoid high LC density in any given section.

3. Under congested conditions, the volume per lane on the weaving segment is at or close to capacity. Hence,
distributing vehicles across lanes at the weaving segment will create gaps for LC. Within the first two sections,
in most scenarios, the number of lane changes by FR movements is greater than the RF movement. This indicates
that FR vehicles in the congested freeway lane tend to, as soon as possible, change lanes to the less congested
auxiliary lane; consequently, reducing the volume in lane 3, which creates greater gap acceptance to facilitate
LC for RF vehicles. Priority tends to be given to the FR movement in the first section as there are more gaps
in the auxiliary lane to change lanes, thereby, decreasing the volume in lane 3, which creates gaps for the RF
movement to change lanes further downstream.

4. In most scenarios, a proportionally high number of lane changes are loaded within the first two sections (0-100
m), then gradually distributed across the remaining sections; the lowest number of lane changes occurred within
the final section to avoid missed exits due to overcrowding.

5. Conclusion

In this paper, a PSO algorithm was proposed for a individual driver advisory on a freeway weaving segment.
Empirical research has observed that a LC concentration problem occurs in weaving segments close to capacity.
The distribution of lane changes was found to be concentrated near the entrance, at times as soon as vehicles enter
the segment. This behaviour leads to congestion and reduces the weaving segment capacity. An advisory control
strategy was shown to alleviate the problem by distributing lane changes along the entire segment according to fixed
distributions. Unlike previous methods, this work proposed an optimisation algorithm, based on PSO, to improve the
LC advisory distribution for weaving vehicles. The speed over a short section of the weaving segment, within the
critical weaving area, was used as the objective function. Traffic simulation was used to evaluate the performance of
the weaving segment using a individual driver advisory and to compare it with the base case, with no control strategy.
These conclusions were made from the results:

1. The proposed PSO algorithm can be successfully used to improve the performance of the weaving segment by
optimising the LC advisory distribution, given the constraints of the problem. The PSO algorithm was modified
to satisfy the boundary and summation constraints implicit in the solution representation.

2. The evaluation of the simulation tests revealed that the optimised LC advisory significantly improved the traffic
performance of the weaving segment. The performance indicators, speed and delay, were improved as a result
of the optimised LC advisory, with speed producing a smoother profile than that of the base case.

3. The optimised LC advisory was shown to effectively distribute the LC of weaving vehicles across the entire
length of the weaving segment. Priority tends to be given to the FR movement in the first section as there are
more gaps in the auxiliary lane to change lanes. This decreases the volume in lane 3, which creates gaps for the
RF movement to change lanes further downstream.

Although field tests would provide more accurate outcomes, the evaluation of traffic simulation shows improved
performance for a weaving segment when optimising the LC advisory distribution. This study concludes that the
proposed PSO algorithm can be used to optimise the LC advisory on a freeway weaving segment, resulting in better
LC distributions.
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