

Macroscopic Fundamental Diagrams from two different data sources: A case of Brisbane, Australia

Takahiro Tsubota Ehime University

Short CV

Takahiro Tsubota

- 2006.3 BEng, The University of Tokyo
- 2008.3 MEng, The University of Tokyo
- 2008.4 2010.6 Pacific Consultants, Co., Ltd.
- 2010.7 2015.2 PhD/Postdoc researcher, Queensland University of Technology
- 2016.4 Assistant Professor, Ehime University

Congestion monitoring and control

- Traffic control and "ideal" traffic states
 - \succ Traffic states (Flow(q), Speed(v), Density(k))
 - Fundamental diagram
 - Control strategy (e.g., local ramp metering)
 - ✓ Inflow control to merging section

Network-wide traffic monitoring

- Macroscopic Fundamental Diagram (MFD)
 - Network-wide aggregated traffic states
 - Well-defined shape in homogeneously congested area
 - Useful for network-wide flow control
 - Inflow control to CBD

Challenge in real-world application

- How to estimate the MFD?
- Variables: Flow & Density

Biased measurements from detectors

Biased measurements from detectors

Table of contents

1. Cumulative counts-based method

2. Trajectory-based method

3. Comparison of two methods and discussion

Traffic density estimation

- Cumulative counts-based method

Correction of the cumulative curves

Probe samples that traverse the whole section The section travel time of individual vehicles

Point to pass

Cumulative plots is modified and the counting inconsistencies are cancelled

Study site – Brisbane network

Brisbane MFD for 5 days

(Mon 22nd Oct – Fri 26th Oct, 2012)

Different colours represent different day's plots

Brisbane network – regional performance

Limitation of Stop-line loop & Bluetooth

- Spatial coverage of Bluetooth scanners
- Estimated MFD represents only a subset of network

Table of contents

1. Cumulative counts-based method

2. Trajectory-based method

3. Comparison of two methods and discussion

MFD from GPS probe data

- Vehicles equipped with GPS works as moving sensors
- High spatial coverage
- Detailed trajectory data within sections
 - GPS tells its location every uplink interval (i.e., every 30 seconds)
- Any limitations/problems in GPS data?

Taxi data filtering

Flow and Density estimation from Taxi

Total Distance Travelled (TDT) and Flow (q) of Taxi samples

$$TDT = \sum_{i} d_{i}$$
 $q = TDT/DT$

Total Time Spent (TTS) and Density (k) of Taxi samples

$$TTS = \sum_{i} r_{i}$$
 $k = TTS/DT$

Expansion to full traffic (Q, K)

Given the proportion of taxi samples to full traffic (*P*)

$$Q = q/P$$
 $K = k/P$

Results

- comparison of trajectory-based and cumulative counts-based methods
- Trajectory based method captures peak/offpeak
- However, trajectory based method always underestimates the variables

Quality and Quantity of trajectory data

Quality and Quantity of trajectory data

Penetration rate: < 3% during morning peak hours

Average trip length vs section length: many incomplete trip data

Summary

- Brisbane MFD is estimated using cumulative counts-based method
 - The MFD with an unique shape exists in Brisbane arterial network

- Trajectory based method is successful in estimating peak/offpeak of traffic congestion
- Trajectory data has problems both in quality and quantity
 - Causes underestimation of the variables
 - May cause challenges in practical use

Thank you

Data provided by
Brisbane City Council
Department of Transport and Main Roads, Queensland
Black & White Cabs

