

Multiscale and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility

Large-scale transportation systems: Monitoring and simulation based on the MFD concept

Ludovic Leclercq

October, 13th, 2017

Univ. Lyon, IFSTTAR, ENTPE

References

- Aboudolas, K., Geroliminis, N., 2013. Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transportation Research Part B: Methodological 55, 265–281.
- Arnott, R., 2013. A bathtub model of downtown tra c congestion. Journal of Urban Economics 76, 110–121.
- Daganzo, C. F., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological 41 (1), 49–62.
- Daganzo, C.F., Geroliminis, N., 2008. An analytical approximation for the macroscopic fundamental diagram of urban traffic. *Transportation Research Part B*, 42(9):771-781.
- Fosgerau, M., 2015. Congestion in the bathtub. Economics of Transportation 4 (4), 241–255.
- Leclercq, L., Sénécat, A., Mariotte, G., 2017. Dynamic macroscopic simulation of on-street parking search: a trip- based approach. *Transportation Research part B*, 101, 268-282.
- Mariotte, G., Leclercq, L., Laval, J.A., 2017. Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. *Transportation Research part B*, 101, 245-267.
- Leclercq, L., Chiabaut, N., Trinquier, B., 2014. Macroscopic fundamental diagrams: A cross-comparison of estimation methods. Transportation
- Research Part B: Methodological 62, 1–12.
- Leclercq, L., Parzani, C., Knoop, V. L., Amourette, J., Hoogendoorn, S. P., 2015. Macroscopic tra c dynamics with heterogeneous route patterns.
- Transportation Research Part C: Emerging Technologies 55, 292–307.
- Leclercq, L., Geroliminis, N., 2013. Estimating MFDs in Simple Networks with Route Choice. *Transportation Research part B*, 57:468-484.
- Mahmassani, H. S., Saberi, M., Zockaie, A., 2013. Urban network gridlock: Theory, characteristics, and dynamics. Transportation Research Part C: Emerging Technologies 36, 480–497.
- Ramezani, M., Haddad, J., Geroliminis, N., 2015. Dynamics of heterogeneity in urban networks: aggregated tra c modeling and hierarchical control. Transportation Research Part B: Methodological 74, 1–19.
- Yildirimoglu, M., Geroliminis, N., 2014. Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams. Transportation Research Part B: Methodological 70, 186–200.
- Yildirimoglu, M., Ramezani, M., Geroliminis, N., 2015. Equilibrium analysis and route guidance in large-scale networks with MFD dynamics. Transportation Research Part C: Emerging Technologies 59, 404–420.

Outline

- Macroscopic urban models
- Estimating the NMFD for a given area
- The simple bathtub formulation
- The trip-based MFD formulation
- Application to surface parking simulation
- 3D congestion maps and travel time estimation at large urban scale

Macroscopic urban models

Transportation models

Large-scale dynamic urban simulation

MFD definition

FD + Network structure (topology / signal timings) + Route choices = MFD

MFD definition (2)

First experimental MFD - Yokohama

Simulated MFD – North of Lyon

Estimating the NMFD for a given area

Travel production and accumulation

Travel Production P

Only these two variables are additive and are then scalable

Mean flow vs. outflow

Mean flow Q

$$Q = \frac{P}{L_{tot}}$$

Outflow Q_{out}

$$Q_{out} = \frac{P}{L_{trip}}$$

A simple example

Estimation from loop detectors

For the equipped network:

$$P = \sum q_i l_i \quad ; \quad N = \sum k_i l_i$$

Scaling factor for the full network ?

$$\frac{L_{tot,full}}{L_{tot,equiped}}?$$

Estimation from Probe vehicles

 $P=V^*N$

A direct estimation of *P* and *N* from probe data require to estimate the scaling factor (penetration rate)

Studied Networks

1/0-1 1/0-2 1/0-3 1/0-4 1/0-5 1/0-6

a LWR mesoscopic simulator (Leclercq and Becarie, 2012)

Loops VS. Edie methods

Probes VS Edie methods

Low penetration rates provide accurate estimation for the mean speed

Loops are still needed to capture the mean flow

Cross-comparison of estimation methods

Current limitations of the simple bathtub formulation

Traffic simulation

(Yildirimoglu and Geroliminis, 2014; Ramezani, Haddad and Geroliminis, 2015; Knoop and Hoogendoorn, 2014, 2015),

Analytical investigations of the single reservoir dynamics

 $q_{out}(t)$ $\frac{dn(t)}{dt} = q_{in}(t) - q_{out}(t)$ $q_{out}(t) = \frac{Q(n(t))}{L}$

NMFD-based traffic simulation

Wave propagation in a single reservoir

Numerical investigations of a single reservoir dynamics

Design to magnify the effect of heterogeneous loadings

- LWR mesoscopic simulation with a triangular FD
- Traffic signals with equal green time and a common cycle
- Wardrop User Equilibrium
- Various input demand and output capacity profiles to represent a maximum of different loadings
- Global variations of the OD matrix parameterized by τ
- We consider (quasi-) stationary situations at the network level and monitor (20 min period):
 - The number of vehicles *n*
 - The travel production P
 - The mean speed V
 - The outflow Q
 - The mean travel distance L

Sensitivity of *L* to τ and *n*

Sensitivity to the boundary conditions (1)

Heterogeneous demand distributions

(Mariotte & Leclercq, Heart, 2016)

Sensitivity to the boundary conditions (2)

Heterogeneous supply distributions

heterogeneous demand

heterogeneous supply

The trip-based NMFD formulation

Trip-based NMFD model (1)

Trip-based MNFD model (2)

Trip-based MNFD model (3)

Towards a multi-reservoir trip-based simulator

- Proper treatment of merges and diverges between
 multiple reservoirs
- Proper treatment of congestion spillbacks between reservoir – definition of a reservoir supply
- Proper treatment of internal trip lengths depending on routes
- Coupling with a routing engine (DTA)

. . . .

Effect of the demand pattern

Application to surface parking

Modeling framework

Regular search process

Simulation results

Reactive demand switch to off-street parking

Smart parking application

3D congestion maps and applications to travel time prediction

Network partitioning

- Network clustering has received lots of attention in the recent literature (Prof. Geroliminis EPFL)
- Usual objectives:
 - -Defining relevant area for MFD definition
 - -Perimeter control

Original network

Clustered network

3D network partitioning (1)

Collaboration with Ditlab from TU-Delft

3D Network clustering (2)

- Three criteria for the clustering operation:
 - Minimizing the link speed standard deviation within cluster (intra-cluster similarity)
 - Maximizing the difference in speed between clusters (inter-cluster dissimilarity)
 - -Each cluster should contain a single connected graph

Partitioning methods

Data preparation: from GIS to graph

Input

- GIS environment
 - 147.059 links
- Individual Travel Times
 - More than 6 millions
 - From 312 OD cameras
 - 42 days measured
- Shortest path per OD

Amsterdam network

Data preparation: network coarsing

Context:

- The number of edges is t times larger with the 3D approach
- Partitioning methods used are NP-complete

Reduce the network keeping the traffic dynamic:

- Macro link: contraction rules based on speed
- Simplify the network structure (e.g., crosssection instead of roundabout)

~10.000 links

Quality of the clustering operations

- Total Variance normalized (TVn)
 - Measure of internal or intra-cluster variance
 - An extension from TV (Saeedmanesh and Geroliminis, 2015)

$$TVn = \frac{1}{N} \frac{\sum_{A \in C} N_A * Var(A)}{S^2}$$

- Connected Clusters Dissimilarity (CCD)
 - Measure of external cluster dissimilarity

$$\text{CCD} = \frac{\sum_{i=1}^{n} \sum_{k=1+i}^{n} \delta_{ik} |\bar{x}_i - \bar{x}_k|}{\sum_{i=1}^{n} \sum_{k=1+i}^{n} \delta_{ik}}$$

Data preparation: link speed estimation

From OD travel time to speed links

- Estimating speed link
 - Average common link speeds
- Missing data speed
 estimation
 - Duplicate speed of the most relevant adjacent link
 - Weighted based considering directions

Clustering results for one specific day (1)

Clustering results for one specific day (2)

Clustering results for all days

Meta-partitioning and consensus learning

Consensual 3D speed maps

Application to travel time estimation (1)

Application to travel time estimation (2)

Conclusion

- The MFD concept is very appealing for monitoring and simulating large-scale network
- A lot of research effort is still required in particular to tune large-scale simulators
- Implementation to the real-field of advanced control strategies based on MFD are still rare

Multiscale and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility

Thank you for your attention

@LudoLeclercq
@erc_magnum

© photo credits – Fotolia.com