

Estimating Macroscopic Fundamental Diagrams of Brisbane, Australia:

Characteristics and limitations of data sources

Takahiro Tsubota Ehime University

17.10.13 第4回坊っちゃんセミナー Frontier of the MFD study (2)

Network-wide traffic monitoring

- Macroscopic Fundamental Diagram (MFD)
 - Network-wide aggregated traffic states
 - Well-defined shape in homogeneously congested area
 - > Useful for network-wide flow control

· Inflow control to CBD

Challenge in real-world application

- How to estimate the MFD?
- Variables: Flow & Density

Congestion monitoring and control

- Traffic control and "ideal" traffic states
 - Traffic states (Flow(q), Speed(v), Density(k))
 - Fundamental diagram
 - Control strategy (e.g., local ramp metering)
 - ✓ Inflow control to merging section

2

Biased measurements from detectors

Biased measurements from detectors

Cumulative counts-base - Naïve method

Table of contents

- 1. Cumulative counts-based method
- 2. Trajectory-based method
- 3. Comparison of two methods and discussion

*C EHIME UNIVERSITY

6

Cumulative counts-base – Midlink sink/sources

Cumulative counts-base – Midlink sink/sources

Traffic density estimation

- Cumulative counts-based method

Cumulative counts-base - Midlink sink/sources

Study site – Brisbane network

Brisbane MFD for 5 days

(Mon 22nd Oct - Fri 26th Oct, 2012)

Different colours represent different day's plots

Limitation of Stop-line loop & Bluetooth

- Spatial coverage of Bluetooth scanners
- Estimated MFD represents only a subset of network

Brisbane network - regional performance Critical regime

Table of contents

- 1. Cumulative counts-based method
- 2. Trajectory-based method
- 3. Comparison of two methods and discussion

MFD from GPS probe data

- Vehicles equipped with GPS works as moving sensors
- High spatial coverage
- Detailed trajectory data within sections
 - GPS tells its location every uplink interval (i.e., every 30 seconds)
- Any limitations/problems in GPS data?

CEHIME UNIVERSITY

EHIME UNIVERSITY

Taxi data filtering

Flow and Density estimation from Taxi

Total Distance Travelled (TDT) and Flow (q) of Taxi samples

$$TDT = \sum_{i} d_{i}$$
 $q = TDT/DT$

Total Time Spent (TTS) and Density (k) of Taxi samples

$$TTS = \sum_{i} r_{i}$$
 $k = TTS/DT$

Expansion to full traffic (Q, K)

Given the proportion of taxi samples to full traffic (*P*)

$$Q = q/P$$
 $K = k/P$

Results

- comparison of trajectory-based and cumulative counts-based methods
- Trajectory based method captures peak/offpeak
- However, trajectory based method always underestimates the variables

Quality and Quantity of trajectory data

Penetration rate: < 3% during morning peak hours

Average trip length vs section length: many incomplete trip data

Quality and Quantity of trajectory data

Summary

- Brisbane MFD is estimated using cumulative counts-based method
 - The MFD with an unique shape exists in Brisbane arterial network
- Trajectory based method is successful in estimating peak/offpeak of traffic congestion
- Trajectory data has problems both in quality and quantity
 - Causes underestimation of the variables
 - · May cause challenges in practical use

Thank you

Research supported by

Queensland University of Technology

Data provided by
Brisbane City Council
Department of Transport and Main Roads, Queensland
Black & White Cabs

