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Abstract 

This paper describes a modified bi-level framework to simulate disruptive events in urban road networks with different levels 

of disruption severity and duration. This framework combines the Cross Entropy method to optimise traffic signals and the quasi-

dynamic user equilibrium assignment model embedded in SATURN software package. This enables simulation of short-term 

closures with less computational effort and running time than fully dynamic models. We have applied this model to the Cambridge 

(UK) network and demonstrated how the degradation at one node affects the optimal signal settings at that node and nearby nodes. 

The computational results show that for different disruption severities, as traffic starts to divert to other routes, the optimal traffic 

signal settings changes, to minimise the travel time. 
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1. Introduction 

To ensure operational continuity of urban road networks, a transportation system’s resilience has become an 

important issue. Over the last two decades, there has been extensive discussion about the need for robust networks to 

minimise the economic and social impacts of disruptions. Detailed reviews of the literature related to degraded 

networks have been conducted, e.g. Berdica (2002) and Mattsson and Jenelius (2015). Koorey et al. (2015) explored 

the scope for dynamic traffic signal control to reduce the impact of disruptions associated with non-recurrent 

congestion (e.g. traffic incidents). It has been suggested that reducing these will have a great effect on network 

reliability as half of the congestion is caused by non-recurring events (Pearce, 2000, Schrank et al., 2009). 
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Several studies of infrastructure resilience have proposed a disruption profile to capture the phases of any significant 

disruption before, during and after the disruption. For example, Asbjornslett (1999) proposed three phases, i.e. stable 

situation before a disruptive event, disruption time, and a new stable situation after the disruption time has passed (Fig. 

1a). The new stable situation may be better or worse than the one before the disruption. Sheffi (2005) identified five 

typical phases of the disruption profile (Fig. 1b): the preparation phase, the disruptive event, the first response, the 

recovery preparation, and the recovery. Both authors indicated that the severity of a disruptive event dictates the initial 

network performance reduction and the recovery time. Additionally, Bruneau et al. (2003) have proposed a resilience 

triangle (Fig.1c), suggesting that the smaller the area of the triangle the greater the resilience. More recently, Taylor 

(2017) presented another representation to reflect the dynamic performance of an infrastructure system (Fig.1d). This 

distinguishes between frequent minor variations in performance and infrequent major disruptions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.(a) Regaining stability after a disruption (Asbjornslett, 1999); (b) Sheffi's disruption profile (Sheffi, 2005); (c) The concept of resilience 

triangle (Bruneau et al., 2003); (d) The resilient triangle in traffic (Taylor, 2017) 

 

We are seeking to improve the resilience by reducing the size of the resilience triangle by reducing its height and/or 

base. There are various options to achieve this, including constructing or improving parallel routes between given pairs 

of nodes. An alternative option is to use traffic signal control. The aim of this study is to reduce the impact of a 

disruptive event (i.e. infrequent variations) using traffic signal control, as previously investigated by Koorey et al 

(2015). 

 

Traffic signal control can be used to assist drivers to avoid blockages and to use other routes to minimise delays. 

Various optimisation algorithms have been implemented to find the optimal set of signal timings, taking into account 

the impact of re-routing. One of these optimisation methods is the Cross Entropy (CE) method proposed by Rubinstein 

(1997). Maher (2008) introduced the CE algorithm to optimise the signal settings on a six-arm signalised roundabout. 

Ngoduy and Maher (2011) and Maher et al. (2013) further explored the CE method to optimise traffic signals in urban 

networks. The results of applying the CE method showed encouraging advantages for computational efficiency and 

convergence, with its more formal mathematical and statistical basis making it simple to apply (Maher, 2008), as was 

also found by Ngoduy and Maher (2012) and Zhong et al. (2016), who used the CE method to calibrate microscopic 

traffic models. Maher (2008), Ngoduy and Maher  (2011), and Maher et al. (2013) used a bi-level framework approach, 

as did Kaviani et al. (2017), who sought the optimal locations of roadside guidance devices across a regional road 

network for improving total travel time within a network during long-term closures such as natural disasters.  

 

This paper describes a bi-level optimisation framework to minimise the impact of disruption (i.e. to minimise the 

travel time in a network) by changing the signal settings (i.e. the green times and offsets), to facilitate re-routing around 

blockages of various severities and durations. 



 D.Abudayyeh et al. / Transportation Research Procedia 00 (2018) 000–000  3 

2. Research method and implementation 

To understand the impact of disruptions on traffic network performance under optimum signal control, a bi-level 

optimisation problem was formulated. The approach, which was introduced by Ngoduy and Maher (2011), was 

adopted and extended to account for urban network degradations. The process for optimising the signal settings 

involves iterating between the CE algorithm and SATURN. The CE algorithm searches for the combination of signal 

settings which minimises the total travel time, calling SATURN to estimate the flows and travel times for specified 

combinations of signal settings, considering re-routing. The iterative process continues until satisfactory convergence 

is achieved (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Bi-level optimisation framework 

2.1. The bi-level framework formulation 

The upper level optimisation problem represents planners trying to minimise the average travel time immediately 

after the disruptive event, when equilibrium has not yet been reached among the road users. The upper level of the 

problem is formulated as: 
L

a a

a=1

Min PI( , )= q t ( , ); subject to : ( , , ) ΩUE UEX q (X) X q (X) X β θ C                             (1) 

where ( , ( ))UEPI X q X is the performance index function (i.e. the total travel time in the network) which depends 

on the vector of link equilibrium flows qUE and the vector of signal timings X consisting of the vector of offsets β, the 

vector of green times θ and the cycle length C; L is the number of links; qa is the flow on link a; ta is the average travel 

time for the link flow; Ω denotes the feasible space of X defined as: 
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where Cmin and Cmax  are the lower and upper bound of the cycle length, respectively; βn is the offset at node n; θn,s 
is the green time at node n for stage s;  𝜃𝑛,𝑠

𝑚𝑖𝑛and 𝜃𝑛,𝑠
𝑚𝑎𝑥 are the lower and upper bound of the green time at node n for 

stage s; Sn is the number of stages at node n; 𝐼𝑛,𝑠 is the inter-green time at node n for stage s. We consider the signal 

settings to be discrete integer values.  

 

The lower level represents users following the user equilibrium principle under the given network condition. This 

can be formulated as: 

( , ).( ) 0 q    UE UEt X q q q                                                                            (3) 

where q is the vector of link flows and qUE is the vector of equilibrium link flows. In equation (3), 𝒕(𝑿, 𝒒𝑼𝑬) denotes 

the vector of link travel times, which is dependent on the vector of signal timings and the equilibrium link flows.  𝛩 

denotes the feasible space of the link flow vector and is explicitly defined as: 
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where 𝑞
𝑎
0 is the link capacity; O and D are the set of origins and destinations; P is the set of possible paths; i, j are 

the origin index and destination index; p is the path index; fijp is the path flow between origin i and destination j using 

path p; δaijp is an indicator variable which equals one if the link a is on path p between i and j, and zero otherwise. 

2.2. SATURN mesoscopic simulator  

In principle, microscopic packages are very suited for dealing with short-term traffic closures, for the reason that 

these models are able to calculate the optimal paths periodically and reassign vehicles to new optimal paths, to take 

account of route changes after a trip has begun, to avoid a blockage to minimise delay. In the absence of disruption or 

congestion no re-assignment will occur. This regular updating is more appropriate for studying short-term capacity 

reductions. However, a major limitation of applying dynamic models in planning is they are impractical to use such 

models for large networks. 

Some mesoscopic simulation packages (e.g. SATURN) can be used to simulate short-term closures using the so-

called “quasi-dynamic” principle (i.e. with residual queues). What the quasi-dynamic approach does is to make the 

traffic conditions at the end of a time-slice be the starting conditions for the subsequent time-slice (Van Vliet, 2015). 

Thus, if a network is modelled from 8:00am-10:00am, small intervals (10 minutes, say) could be used to estimate the 

flows and travel times in each interval. By using this feature, short-term degradation might be simulated using 

SATURN, since the traffic condition for short intervals can be captured. It should be noted that the duration of the 

interval is directly related to the simulation running time. For instance, for a two-hour simulation interval, using one 

minute time-slices will involve more running time than using 10 minute time-slices, as SATURN will analyse 120 and 

12 scenarios, respectively. Overall, less detail and running time are needed compared with microscopic packages. 

2.3. The CE method 

The CE method, a Monte-Carlo method, was originally developed to estimate the probability of occurrence of rare 

events (e.g. the probability of failure of a particular network), then it was extended to solve combinatorial optimisation 

problems when the objective function is very complicated and it is necessary to do a lot of sampling. The reader may 

refer to a full description in Rubinstein and Kroese (2004). 

 

The CE involves three main steps: generating a random sample from a pre-specified probability distribution 

function, evaluating the selected sample based on a performance index, then updating the samples based on a 

smoothing parameter (α) in which: 

 
( 1) ( ) ( )(1 )t t t

new                                                                                            (5) 

where 
( 1)t 

is the set of parameter values that minimises ( , )PI
UE

X q (X) in equation (1), t is the iteration 

number, 
( )t  is the previous set of parameter values, and 

( )t
new is the new set of parameter values. Typically, the 

value of α varies between 0 < α ≤1. 

 

Each observation in this sample is scored for its performance as the solution to the specified optimisation problem. 

A fixed percentage of the best performing observations are referred to as the elite sample. The elite sample helps to 

update the parameters in the next generated solutions to improve the quality of the solution. This will be repeated until 
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convergence occurs and an optimal solution is found. 

 

To improve the algorithm’s performance: 1) the population size can be increased to maximize the possibility of 

having a good random sample. 2) the smoothing factor (α) can be varied (it was found empirically that a value of α 

between 0.4 and 0.9 gives the best results (de Boer et al., 2005). 3) the percentage of the elite sample. It is worth 

mentioning that the process was repeated several times with different seed values for the random number generator to 

identify the robustness of the results (i.e. how sensitive they are to different seed values). 

3.  A study case to test the numerical model on a real network 

The performance of the proposed approach was assessed by applying it to a real network. 

3.1. The testbed description 

The approach was tested on the Cambridge (UK) network (Fig. 3a), which comprises 141 zones, 1,091 links and 

608 nodes, including 24 signalised junctions with 2-stage arrangements (Fig.3b). The common cycle length was fixed 

at 60 seconds, and all inter-greens were set to 5 seconds. The total demand in this network reflects one peak hour, with 

a total number of 42,023 commenced vehicle trips. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Cambridge network modelled in SATURN; (b) The 24 signalized intersections represented by red squares 

The objective was to find the set of values for the 71 variables (i.e. 48 green times and 23 offsets) that minimises 

the travel time in the network in the case of disruption. These variables were constrained to be integers, with the 

minimum green times being set to 7 seconds, and the offsets ranging from zero up to 59 seconds, with the offset at 

node 2045 being zero. The traffic flow at the most congested intersection (node 2010) was degraded by applying 

several blockage scenarios; which involved various combinations of two factors (the duration and the % of capacity 

reduction of the blockage). 

3.2. Simulation Results 

The results of simulating different blockage scenarios (i.e. the green times and offsets) are summarised in Table 1 

for node 2010 and the adjacent nodes 3089 and 2040. These results are for four levels of capacity reduction (0%, 25%, 

50%, and 75%) at node 2010, for a period of one hour. Re-routing can result in changes to the optimal signal settings 

at the node where the disruption occurs and at other signalised intersections in the vicinity of the node where the 

disruption occurs. The results indicate that the optimal signal settings for node 2010 appear to be sensitive to the 

severity of the disruption. For instance, there is a 54% increase in the optimal green time at node 2010 with a 75% 

reduction in its capacity. Furthermore, the changes in the optimum green times and offsets for the nearby signalised 

intersections (i.e. nodes 3089 and 2040) show how the degradation at one node affects the optimal signal settings in 

the nearby nodes. Moreover, the changes as the capacity reduction increases from 0% to 75% are far from linear (i.e. 
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the optimal settings tend to fluctuate). For example, the offsets at 2010 are, respectively, 17s, 41s, 12s, and 18s and 

the green times for stage A at 2040 are, respectively, 43s, 22s, 43s, and 43s. SATURN captures the re-routing of 

drivers at the blocked node 2010 (Fig. 4). 

Table 1. Green times (Stage A) and offsets for nodes: 2010, 3089, and 2040 

                  Node 

Reduction 
At node 2010 At node 3089 At node 2040                                  

Capacity reduction Green times (s) Offsets(s) Green times (s) Offsets (s) Green times (s) Offsets (s) 

0% 28 17 19 37 43 57 

25% 23 41 22 37 22 9 

50% 43 12 23 15 43 9 

75% 43 18 12 28 43 9 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Optimum path obtained from SATURN without a blockage (green) and with a blockage (red)  

The convergence of the green times and offsets for three nodes: 2010, 3089, and 2040 are presented in Fig. 5 and 

6, respectively. This convergence is for 75 % reduction in capacity at node 2010. Initially, the probability of occurrence 

for each solution is equally likely with a probability of 0.0270 for each of the 37 possible green times and 0.0167 for 

each of the 60 possible offsets. The probability of each solution is then updated after each iteration based on the elite 

sample generated initially from a discrete uniform distribution with the mean and the standard deviation of the values 

in this sample to create a new distribution. The distribution becomes less uniform and more concentrated as the number 

of iterations increases, until the solution stabilises and has a probability close to one (the optimal value) of the variable. 

For instance, the probability of having a solution of 43s for the green time at node 2010 is one (Fig. 5c).  

 

The convergence of offsets is difficult to obtain, particularly for the disrupted node 2010 (Fig. 6c). The offset values 

in Table 1 are those with the highest probability after 30 iterations. For example, for a 75% reduction in capacity at 

node 2010, the offset at node 2010 with the highest probability is 18s, which has a probability of 0.6. These values 

have been used for estimating the total travel times. One should note that the offsets at some nodes do not necessarily 

converge after 30 iterations, especially at nodes with closures (Fig.7). It can be seen that the convergence for green 

times is much quicker than for offsets. In the case of a 75% capacity reduction at node 2010 for one hour, the value of 

the objective function (i.e. the total travel time in the network) is decreased from 19,579 to 18,250 hours (i.e. about 

7%). The mean of all possible solutions converges to a value of around 18,250 hours after 20 iterations. 

 

The quasi-dynamic approach is used to simulate the traffic condition for short intervals, the simulated hour being 

divided into 15-minute intervals (i.e. 4 time slices) and 4-minute intervals (i.e. 15 time slices). The results obtained 

from applying the quasi-dynamic for different blockage duration (4, 12, and 20 minutes) are still under preparation. 
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Fig.5. The convergence of green times, stage (A), in the case of 75% reduction for nodes: 2010 (a-c), 3089(d-f), and 2040(g-i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig.6. The convergence of the offsets in the case of 75% reduction for nodes: 2010 (a-c), 3089 (d-f), and 2040 (g-i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. The standard deviation for nodes 2010, 3089, and 2040 in the case of 75% reduction in capacity for: a) the offsets; b) the green times 
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4. Conclusions and Recommendations 

1. The results of the CE framework (as described above) indicates that there is a value in using the method to 

optimise traffic signal control to minimise the total travel time to assist traffic to divert around blockages. These results 

are for one hour closure, shorter time closures (e.g. 4 minutes) using the quasi-dynamic approach is still ongoing. 

 

2. The most congested node was chosen as the location of a blockage, as network performance is expected to be 

sensitive to blockages at congested nodes. However, the exposure index introduced by Jenelius et al. (2006) might be 

a more appropriate indicator of network performance sensitivity and it is planned to investigate its use for identifying 

critical blockage locations. 

 

3. The focus of this paper is on how we can assist road users to re-route to good alternative routes (i.e. to avoid the 

disrupted areas). Re-routing can result in changes to the optimal signal settings at the node where the disruption occurs 

and at other signalised intersections in the vicinity of the node where the disruption occurs. 
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