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Abstract

When there is upstream congestion the discharging flow-rate of a tunnel or sag bottleneck can drop, which leads to additional
traffic jams. Therefore, control strategies such as variable speed limit (VSL) have been developed aiming to prevent or mitigate
upstream traffic congestion. Understanding traffic dynamics at bottlenecks, especially the mechanism of capacity drop, is critical
for developing such models. Many studies are centered on the control algorithm design of VSL. However, there are few studies
that systematically anayze the effect that the VSL application area has on the control effectiveness. This paper extends to sag and
tunnel bottlenecks the theoretical framework to analytically solve the optimal location of the speed limit application area (first
developed in Martı́nez and Jin (2018)). Moreover, we prove that the optimization formulation can be simplified. Consequently,
it can be applied to further bounded acceleration models than the constant one. Finally, for an open-loop control with a constant
speed limit for the Kobotonoke tunnel bottleneck, we validate the analytic definition of optimal location by preventing capacity
drop in numerical simulations.
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1. Introduction
A complete understanding of the mechanism behind the queue formation that triggers the so-called capacity drop is

still elusive (Banks (1991), Hall and Agyemang-Duah (1991), Cassidy and Bertini (1999)). Some studies consider that
capacity drop may be caused by microscopic phenomena, such as lane-changes or heterogeneity among vehicles or
lanes. On the other hand, bounded acceleration (BA) has also been considered to be responsible of capacity drop, Hall
and Agyemang-Duah (1991), Khnoshyaran and Lebacque (2015), Jin (2018). The implementation of BA is motivated
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because many first order models lead to infinite acceleration and deceleration rates, e.g. the LWR-model (Lighthill
and Whitham (1955), Richards (1956)). However, since the two-phase continuum model, Lebacque (1997), Lebacque
(2003), very few continuum traffic flow models explicitly incorporate BA. The comparison between two recent studies,
Jin (2017a) and Jin (2017b), shows that BA is a necessary and sufficient condition to reproduce capacity drop at lane-
drop bottlenecks. This methodology has been expanded in Jin (2018) for sag and tunnel bottlenecks to reproduce the
effects of capacity drop.

Aiming to increase the system’s discharge-flow rate at bottlenecks, several control strategies have been proposed in
the literature, e.g. ramp metering and variable speed limits (VSL). In this context, VSL aim to reduce the traffic flow
entering a critical bottleneck by lowering the speed of the vehicles (i.e. substantially lower than critical speed), so as
to prevent, eliminate, or delay the effects of capacity drop. The main drawback is the queue formation and consequent
shock wave that propagates upstream, which might block off-ramps and worsen the traffic efficiency due to queue
spill-back Carlson et al. (2010b). Therefore, it can be inferred that an adequate location of the VSL application area
is crutial to improve traffic performance. Moreover, a recent analytical and numerical study on lane-drop bottlenecks
Martı́nez and Jin (2018) argues that an optimal location for the VSL application area exists. Previous studies such as
Carlson et al. (2010a) and Chen et al. (2014) assumed that a distance is needed between the end of the VSL application
and the bottleneck, to allow vehicles to accelerate to a certain speed (usually the critical speed) before entering the
bottleneck. Nevertheless, in Martı́nez and Jin (2018) it was shown mathematically that: (i) there exists a minimum
distance between the VSL application area and the bottleneck in order to prevent the occurrence of capacity drop,
even though this minimum distance could be zero under certain conditions; (ii) vehicles do not need to accelerate to
uncongested states before entering the bottleneck to avoid capacity drop; and (iii) the larger speed limit, the longer
distance is needed. The present work aims to extend the results obtained in Martı́nez and Jin (2018) to other types of
bottlenecks, specifically to sag and tunnel bottlenecks. Sags are freeway stretches along which the gradient changes
significantly (increasing with the direction of flow). In several studies it is discussed how drivers change their driving
behavior on these uphill sections.

The rest of the paper is structured as follows. In Section 2 the bottleneck, the bounded acceleration and the con-
tinuum car following model are presented. In Section 3 the mathematical formulation in Martı́nez and Jin (2018) is
extended for sag and tunnel bottlenecks and a theorem is presended to simplify the optimization problem. Moreover,
in Section 4 numerical simulations with a continuum car-following model are used to analyze the impacts of the
control location on capacity drop for the Kobotonoke tunnel (Koshi et al. (1992)). Finally, we conclude the study in
Section 5 with a discussion and future directions.

2. Model
2.1. Sag or tunnel bottleneck definition

Two phenomena are related to capacity drop in sags Koshi et al. (1992), Koshi (2003): (i) a particular change
in car-following behavior and (ii) extreamly low accelerations downstream of the bottleneck. Based on Goñi Ros
et al. (2013) drivers inside the bottleneck keep larger distance to the leader than on the downhill section for similar
speeds. On the other hand, in a tunnel, a driver tends to drive more carefully due to the low-light conditions and also
leaves a larger distance. In summary, the capacity reduction in these type of bottlenecks can be explained by a time
gap increase, which equals the time for a follower to cover the distance (clearance) to the front vehicle. Assuming
increasing time gaps, a location-dependent triangular fundamental diagram Munjal et al. (1971) can be expressed as
in (1). The authors assume that the free-flow speed and the jam density are constant at all locations. The bottleneck is
defined by increasing linearly the time gap between x = 0 and x = L (2).

q(x, t) = min
{

v f k(x, t);
1
τ(x)

(
1 −

k(x, t)
k j

)}
(1)

τ(x) =


τ1 if x < 0

τ1 +
τ2 − τ1

L
x if 0 < x < L

τ2 if x > L

(2)
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2.2. Bounded acceleration models

Several BA criteria have been proposed in the literature. The constant bounded acceleration (CBA) with a0 is the
simplest one, other models include a speed-acceleration relationship, e.g. TWOPAS model Allen et al. (2000) (3) or
Gipps model, Gipps (1981). In Jin (2018) it was proven that the Riemann problem with entropy condition has a unique
solution when the constraint for bounded acceleration is introduced inside the bottleneck. This bounded acceleration
model needs to fulfill several criteria: (i) be non-negative A(x, v) ≥ 0, (ii) be bounded by a maximum acceleration rate,

A(x, v) ≤ a0; and (iii) have a non-increasing relation with speed, i.e.
∂A
∂v
≤ 0.

Amax(v) = (a0 − gΦ(x))
(
1 −

v
v f

)
(3)

2.3. Continuum car-following

The second order model used is an extension of the kinematic wave model developed in Jin (2018), considering the
equivalences in Jin (2016). It considers both vehicles and time continuum variables, which are discretized (4). This
model is able to reproduce the capacity drop in an endogenous way when upstream demand exceeds the capacity of
the downstream road. The dropped capacity depends on the fundamental diagram definition and the BA-model.Xt(t + ∆t,N) = min

{
Xt(t,N) + ∆t · Amax(Xt(t,N)); V

(
X(t,N − ∆N) − X(t,N)

∆N

)}
X(t + ∆t,N) = X(t,N) + Xt(t + ∆t,N) · ∆t

(4)

3. The control impacts
3.1. Speed limit

The interest of the present work is to study the impacts of control location on traffic. Consequently, an open-loop
control is designed, i.e. time-independent. Its goal is to control the demand at the bottleneck section. Therefore, it
should be able to accommodate the downstream supply.

(a) (b)

Fig. 1: (a) Maximum speed limit, VS Lmax, defined by downstream capacity, C2. (b) Lower speed limit and its associated flow rate,
CVS L, and speed for congested downstream states, v2.
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Assuming that the speed-density relation of drivers is not affected by the control implementation, the election of
such speed limit can be deduced from Figure 1. It is evident that there is a maximum VSL (5), i.e. the speed that
allows a throughput as high as the downstream capacity, C2. Lower speed limits are also feasible, however they will
further reduce the flow rate exiting the control. The maximum flow observed for a given speed limit, CVS L, can be
calculated from (6).

VS Lmax =
v f

v f k j (τ2 − τ1) + 1
(5)

CVS L =
k jVS L

k jτ1VS L + 1
=

(
τ1 +

1
k jVS L

)−1

(6)

3.2. Location of application area

To prevent capacity drop, the speed of vehicles exiting the controlled area must be determined by the bounded
acceleration and not by the LWR-stationary state, Martı́nez and Jin (2018). Under these conditions the traffic states
inside and downstream from the control application area are stationary. In that study it was argued that only for a
certain control locations the equilibrium states inside the bottleneck could be driven to a BA-traffic states. A com-
plicated mathematical formulation was derived to obtain the minimum distance between control end and the start of
a lane-drop bottleneck. This formulation is extended here for a sag and tunnel bottlenecks, (7). Moreover, through
Theorem 1, this mathematical problem can be simplified to a maximization problem with an ODE and two boundary
conditions as constraints (8).

Lopt
u = min

Lu
|Lu|

s.t.
dv∗(x)

dx
=

A(v∗(x))
v∗(x)

v∗(Lu) = VS L

v∗(x) ≥ Ψ(x) =
CVS L

k j − k jτ(x)CVS L
,∀x ∈ [Lu, L]

(7)

Theorem 1. The speed is determined by the bounded acceleration for any location inside the bottleneck if and only
if the speed at the entrance of the bottleneck is at least the speed imposed by the control, i.e. v∗ (x = 0) ≥ VS L, and
the speed at the end of the bottleneck is at least the speed of the congested branch of the downstream fundamental
diagram associated to the throughput that the control defines, i.e. v∗ (x = L) ≥ v2.

Proof. If A(v∗(x)) is a decreasing (or constant) function in speed and the speed v∗(x) is increasing in x, the slope of
v∗(x) is decreasing in x, i.e. the speed profile is convex. Moreover, the boundary condition v(Lu) = VS L determines
the location where speed starts increasing.

On the other hand, the minimum speed at each location, Ψ(x), (to ensure that vehicles are accelerating at maximum
rate) is also strictly increasing with x. However, it increases in a hyperbolic shape. This can be proven because τ(x) is
decreasing linearly with x. Thereafter, the slope of Ψ(x) is strictly increasing inside the bottleneck and is constant for
upper and downstream links. See Figure 2.

Consequently, the condition to ensure a BA traffic state inside the bottleneck (v∗(x) ≥ Ψ(x)) is met if and only if the

condition holds both at the start and end of the bottleneck, i.e. v∗(0) ≥ VS L and v∗(L) ≥ Ψ(L) =
VS L

k jVS L(τ2 − τ1) + 1
.

Note that the condition at x = 0 is fulfilled automatically if the control location ends before (or at) the start of the
bottleneck bottleneck (i.e. Lu ≤ 0).
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Fig. 2: Illustration on required speed at each location. The dashed-red speed profile is unfeasible, while dotted-green is feasible but
not optimal. Only when v∗(L) = v2 the control was implemented at the optimal application area, i.e. black speed profile.

The required distance between the end of the control application area and the end of the bottleneck to prevent
capacity drop is called critical length. From Theorem 1, it can be concluded that the minimum theoretical critical
length is the zone where the time gap is increasing, i.e. the bottleneck length. Depending on the downstream congested
speed, v2, and the bounded acceleration model, the critical length may be longer than the minimum critical length.
Moreover, (8) can be solved analytically if the bounded acceleration is a constant. Then, the critical length is the
distance required to accelerate from VS L to v2, that can be obtained from basic kinematic equations. Otherwise
a numerical solution is needed to solve the ODE in (8). This can be solved with an explicit scheme from x = L
integrating in the upstream direction.

max
Lu

Lu

s.t. v(x)
dv(x)

dx
= A(v(x))

v(Lu) = VS L

v(L) ≥ v2 =
VS L

k jVS L(τ1 − τ2) + 1
Lu ≤ 0

(8)

4. Numerical results
4.1. Without control

Considering Kobotonoke Tunnel bottleneck geometry (Koshi et al. (1992)), the model is applied assuming constant
demand, the parameters used are obtained from Jin (2018) and are summarized in Table 1. The different time gaps
along the freeway stretch are defined in (2). However, in this simulation the upgrade is not considered, because
the maximum acceleration would be both location- and speed-dependent. In that case, Theorem 1 should be modified
slightly and (8) may need to be revised if the acceleration is not strictly decreasing with x or non-monotone. Thereafter,
the BA-model in (3) is considered with φ = 0. In Figure 3 the simulations results without control are presented.
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Table 1: Parameters of the simulation.

Parameter Value Units

Free-flow speed, v f 80 km/h
Jam density, k j 140 veh/km
Acceleration rate, a0 0.407 m/s2

Bottleneck length, L 1.5 km
Time gap upstream to the bottleneck, τ1 1.5 s/veh
Highest time gap inside the bottleneck, τ2 2.1 s/veh

Fig. 3: (a) Trajectories of 300 vehicles. (b) Normalized flow rate (over downstream capacity) for several vehicles. (c) Speed profile
of different vehicles. (d) Temporal evolution of traffic states for different vehicles.

4.2. With VSL control

By imposing the control of VSL, we aim to modify the equilibrium state of LWR model to obtain a BA-stationary
state inside the bottleneck. It is important to note that since the BA model considered is TWOPAS, the control speed
cannot be VS Lmax. When the maximum speed is imposed in a control, v2, is precisely the free-flow speed and this
is never achieved with a TWOPAS BA model, due to its asymptotic shape. Consequently, the required Lu would be
x = −∞. To avoid this non-meaningful solution, the speed limit from (5) is slightly rounded down to the first decimal,
i.e. VS L = 27.5km/h.

The numerical solution of (8) is presented in Figure 4. The speed profile is obtained by explicit Euler integration
from the boundary condition at x = L. The obtained Lopt

u is −1127m. The simulation results in Figure 5 show how the
adequate location of the control end is crucial for capacity drop prevention. It is important to highlight that the critical
distance obtained through the simulation results is slightly higher than the obtained through numerical integration of
(8). However, the difference is less than 45m, which represents less than a 4% difference. This difference could be
related to numerical errors.

5. Discussion
In this paper it has been proven that the definition of optimal VSL application area defined in Martı́nez and Jin

(2018) can be extended to sag and tunnel bottlenecks. The numerical results presented in Section 4 show that if the
BA stationary state is stable inside the bottleneck, capacity drop can be prevented. However, if the end of the control
application is too close to the bottleneck, a sudden break at the exit of the bottleneck disturbs the BA stationary state.
After a long enough period, the traffic states will be the stationary states observed without control, Figure 3.

Moreover, a simplification of the optimal location formulation in Martı́nez and Jin (2018) has been presented.
Herewith, this location can be calculated analytically for more complicated BA-models than the constant BA. It has
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Fig. 4: Numerical calculation of speed profile under optimal conditions.

(a) Traffic states in FD. (b) Normalized flow rate. (c) Speed profiles.

(d) Traffic states in FD. (e) Normalized flow rate. (f) Speed profiles.

Fig. 5: (a)-(c) Control at Lu = −1140. After several vehicles break down the acceleration process inside the bottleneck is defined by
LWR states and not bounded by the BA model. Capacity drop appears. (d)-(f) Control at Lu = −1170. Stationary speed profiles,
acceleration of vehicles is bounded by BA model at all locations. Capacity drop prevention.
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also been discussed that in TWOPAS model (as well as in Gipps model) v f is never achieved. Thus, the speed profile,
v∗(x), will have an horizontal asymptote and the theoretical maximum speed limit VLS max cannot be implemented.
However, real vehicles do accelerate to free-flow speed. This suggests that other more realistic BA-models should be
defined in the future. As long as the BA meets the conditions to generate a convex speed profile, Theorem 1 can be
used to simplify the optimal mathematical formulation. In other words, the methodology presented can be applied for
any acceleration-speed relation, Amax(x, v), that is non-negative and non-increasing with speed.

It is important to highlight that the bottleneck defined in this paper considered reduced downstream capacity on
the whole link (2). However, when the tunnel ends, vehicles might be able to reduce their time gaps again to reach τ1.
Modifications on the bottleneck geometry are not expected to modify the minimum required speed Ψ(x). However, the
last condition on (8) implicitly assumes that the associated LWR-equilibrium traffic state is in the congested branch
of the fundamental diagram. Thereafter, the formulation of optimal location should be revised and maybe extended
to ensure the stability of the bounded acceleration process from v∗(L) = v2 to free-flow speed, when the downstream
capacity is higher than C2. Moreover, a sag bottleneck with piece-wise definitions of slope inside and downstream of
the bottleneck might also influence the stability of the bounded acceleration stationary states. In conclusion, further
research on the effects of downstream road characteristics are needed.
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