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Abstract

Small imaging satellites (SISs), which has attracted attention in remote sensing field recently, would provide a novel type of data
for traffic state estimation (TSE): that is, spatial distribution of every cars in anywhere on our planet with relatively short time
interval. This nature is particularly useful to complement connected vehicle (CV) data, which is sampled but time-continuous data.
This paper proposes an ensemble Kalman filter-based TSE method using SIS and CV data. The proposed method endogenously
estimates the fundamental diagram of traffic flow and penetration rate of CVs based only on SIS and CV data, making the method
completely free from roadside detectors. The accuracy of the proposed method is verified by numerical simulation.
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1. Introduction

Traffic state estimation (TSE), which estimates vehicular traffic state in unobserved area based on partially collected
data, is essential to road traffic management. Up to the present, various types of data have been utilized for TSE
purpose, such as loop detectors, global navigation satellite system-equipped connected vehicles (CVs), and connected
and automated vehicles (CAVs) (Seo et al., 2017a). However, each of these data types has limitations. For example,
detectors do not cover wide spatial area due to sensor installation cost. CV data do not provide quantity related
information, namely, flow and density; because CVs are only part of the vehicles in road network. CAVs are not widely
available at this moment as they are still developing technology.

Recently, small satellites, especially small imaging satellites (SISs), has attracted attention in the remote sensing field
(Konecny, 2004; Sandau, 2010). Their notable feature—in fact, the definition—is their substantially smaller dimension
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(e.g., volume less than 1 m3 and mass less than 500 kg) compared with conventional satellites. This feature allows us
to launch SISs with extremely low-cost and operate large number of them simultaneously. For example, among civilian
Earth observation satellites in low Earth orbit launched during 2013–2017, approximately 350 were SISs, whereas
approximately 40 were conventional satellites (based on the database provided by USC (2017)). Furthermore, the
number of SIS launches is predicted to increase rapidly in the near future. This overwhelming quantity will enable us
frequent, flexible, and low-cost remote sensing. For instance, a commercial SIS can capture a photo of 24 km2 region
with resolution of less than 1 m (Hayakawa et al., 2014), and a constellation consists of dozens of low Earth orbit SISs
can capture photos of a specific region with less than few hours time interval (Sandau, 2010). Therefore, SISs would
able to detect position of all the vehicles and therefore space-continuous density by image recognition with short time
interval. Meanwhile, a major limitation of SIS data is that the time interval between two consecutive observation is
still not enough to measure time-continuous traffic state variables such as speed and flow.1

SISs would provide a novel type of data for TSE whose nature is completely different from conventional data such
as detectors and CV data: namely, spatial distribution of every cars in virtually everywhere at a time moment. This
feature is particularly useful to complement CV data, which is sampled but time-continuous. On the other hand, CV
data’s time-continuity could be useful to complement SIS data, which has relatively long observation time interval.

The aims of this study are to formulate a TSE method that exploits SIS data and to understand basic properties of
the proposed method through simulation-based analysis. Specifically, we propose a TSE method that combines SIS
data and CV data in order to complement limitation of each others while not relying on any detectors.

2. Traffic observation by SIS

2.1. Observable variables and time interval

The typical observable variable by SIS observation could be location of all the individual vehicles on the surface in
a particular area at a particular time moment if the weather permits. This information can be automatically obtained
by applying image recognition techniques to images taken by SISs. The traffic density can then be calculated from it.

The location of observation areas and time interval of the observation mostly depend on acceptable off-nadir angle
and number of SISs in the orbit. In short, the smaller the off-nadir angle, the better the imaging quality and longer the
time interval; and the larger the number of SISs, the shorter the time interval. For example, time interval of observation
of a mid-latitude region with 24 SISs could be approximately 7 hours with 5 degrees off-nadir angle and 1 hours with
40 degrees (Axelspace, 2017). Some of the concepts of satellite imaging is illustrated in Fig. 1.2

2.2. Errors of SIS observation

We analytically investigate errors of SIS observation. The overall performances of vehicle counting and density
measurement by SIS observation might be affected by three types of errors: miss-detection, double-counting, and
false-positive (i.e., detecting a nonexistence vehicle).

Vehicle counting error can be derived as follows. Let N be true number of vehicles in a road section of interest,X
be the length of the section, and N̂ be number of vehicles counted by SIS in the section. As technical performance
parameters of SIS, let ∆xS be the spatial width of the scan window for detecting one vehicle, pM be probability

1Besides SIS data, two methods that can collect spatial distribution of cars are commonly known: conventional satellites (McCord et al., 2003;
Suchandt et al., 2010) and aircraft imaging (Fuse et al., 2003; Hoogendoorn et al., 2003; Coifman et al., 2006). Compared with conventional satellites,
SIS has clear advantage. Namely, SIS data can be obtained with substantially shorter time interval because of their large number. Compared with
aircraft imaging, SIS has advantages and disadvantages. Airplane imaging has narrower spatial coverage, but can continuously collect data for a
certain time duration. Time interval of aircraft imaging might be larger than SIS, since number of such aircrafts is limited. A clear limitation of SIS
and these data collection systems is that they are vulnerable to bad weather.

2Technical notes: The off-nadir angle is the angle from the nadir to the line of sight of a satellite. Zero off-nadir angle means that the satellite
flies by the top (i.e., zenith) of the location of interest. Small off-nadir angle is especially desirable for urban traffic observation because observers
need to see through concrete jungle. There is a strict relation among off-nadir angle, revisit time of a SIS, and pre-determined orbit, because SISs
do not have propulsion systems. For the details on the orbital mechanics, refer, for example, Lo (1999).
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Fig. 1: Satellite flyby and its technical characteristics.

of missing a vehicle, pD be the probability of double-counting a vehicle, and pF be the probability of detecting a
nonexistence vehicle per unit scan; these values can be given based on SIS’s specification.

If there exists miss-detection error only, N̂ follows a binomial distribution with number of trialsN and success rate
1− pM : namely, N̂ ∼ B(N, 1− pM ). If there exists double-counting only, N̂ follows a shifted binomial distribution:
N̂ = N + Ñ with Ñ ∼ B(N, pD). If there exists false-positive only, N̂ follows a shifted binomial distribution:
N̂ = N + Ñ with Ñ ∼ B(X/∆xS , pF ). Assuming that each of the errors is independent from the others and they
can be approximated by Gaussian distributions, the entire measurement can be approximated as

N̂ ∼ N (N − pMN + pDN + pFX/∆xS , pM (1− pM )N + pD(1− pD)N + pF (1− pF )X/∆xS) , (1)

where N (µ, σ2) represents Gaussian distribution with mean µ and variance σ2. This can be further approximated as

N̂ ∼ N (N, (pM + pD)N + pFX/∆xS) , (2)

by ignoring the second order terms of pM , pD, and pF , which should be substantially smaller than one, and subtracting
the known bias in the mean, namely −pMN + pDN + pFX/∆xS .

Density measurement error can be derived based on the above result. Let k be true density in a road section of
interest, and k̂ be estimated density of the section by SIS. According to Eq. (2) and the definition of density (i.e.,
k = N/X), the distribution of density estimated by SIS can be approximated as

k̂ ∼ N (k, (pM + pD)k + pF /∆xS) . (3)

3. TSE method

3.1. Overview

We consider an estimation problem of traffic state, namely, flow, density, and speed, of traffic on a corridor. The
geometry of the corridor is assumed to be known.

As traffic data collection devices, SISs and CVs are considered. The direct measurements are density measured by
SIS and trajectories of CVs. Based on thesemeasurements, following variables are inferred: fundamental diagram (FD),
penetration rate (PR) of CVs, and mean speed of traffic. Finally, the traffic density and FD are estimated by integrating
(i.e., data-fusing) these information based on a data assimilation framework whose system model is a traffic flow
model. In other words, distribution of the density is estimated by the data assimilation framework which takes a kind
of weighted average of the model prediction (Section 3.3) and the multiple observed densities (Sections 3.4.1, 3.4.2,
and 3.4.4), in which the “weight” is determined by reliabilities of these variables (i.e., procedures called “prediction”
and “filtering”). Fig. 2 illustrates relation between the measurements, inferences, system model, and final estimation
results.
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Fig. 2: Relation between the raw measurements, intermediate inferences, system model, and final estimation results.

3.2. Data assimilation

As a data assimilation framework, ensemble Kalman filter (EnKF) (Evensen, 2009) is employed. A state–space
model for EnKF can be expressed as

xn = fn(xn−1,νn), (4)
yn = Hnxn + ωn, (5)

where Eq. (4) is a system equation, Eq. (5) is an observation equation, xn is a state vector consisting of the density
and FD parameters, fn is a system model representing a traffic flow model, νn is a system noise vector, yn is an
observation vector consisting of multiple observed density and the FD parameters, Hn is an observation matrix, and
ωn is an observation noise vector, respectively, at time step n. The observation noise vector ωn follows Gaussian
distribution: ωn ∼ N (0, Rn).

The EnKF estimates the most probable xn based on given yn, fn, Hn, νn, and Rn. For the solution procedure,
see, for example, Section II.B of Seo et al. (2015). In what follows, xn, yn, fn, Hn, νn, and Rn are formulated to
describe our TSE problem with SIS and CV.

3.3. System model

The cell transmission model (CTM) (Daganzo, 1994) is employed as the system model. The state vector xn consists
of density knj , number of CVs rnj , respectively, in cell j at time n, and the FD parameters free-flow speed u, critical
density kc, and jam density κ, which may depend on location. The CTM can be expressed as

kn+1
j = knj +

∆t

∆x
(y(knj−1, k

n
j )− y(knj , k

n
j+1)), (6)

y(knj−1, k
n
j ) = min{uknj−1, qmax, (κ− knj )ukc/(κ− kc)}, (7)

where ∆t and ∆x are time and space, respectively, discretization widths satisfying ∆x ≥ u∆t, and qmax is the flow
capacity, which is equal to ukc except for a bottleneck. Notice that Eqs. (6) and (7) can be rewritten in a form of
xn+1 = fn(xn); therefore, fn is constructed based on Eqs. (6) and (7).

The upstream boundary condition is assumed as completely unknown, as we do not have any detectors. This
is represented by assuming that the density of the upstream-end cell follows uniform distributions in [0, kc]. This
corresponds to νn. The exact number of CVs rnj are assumed to be known, as CVs positioning is sufficiently accurate.
The variable rnj is computed based on the cumulative count to simulate CVs traveling with the rest of traffic.
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3.4. Observation model

The observation model consists of several components. Some of them infer density based on different data sources
and mechanisms. The observation model aims to obtain a reliable density observation by combining these components.

3.4.1. Density measured by SIS
The density in an arbitrarily area can be directly measured when SIS observation is conducted. Let S be the set of

time steps where SIS observed the traffic state. According to Eq. (3), this measurement can be approximated as

k̂nj ∼ N (knj , (pM + pD)knj + pF /∆xs), ∀n ∈ S. (8)

3.4.2. Density inferred by PR of CV measured by SIS
The PR of CVs in an arbitrarily area can be directly measured when SIS observation is conducted. It is reasonable

to assume that the PR is a static variable; more specifically, the expected PR of unobserved period can be assumed to
be identical to a recently measured PR. This information can be utilized to infer expected density of cells with CVs.

Let pnj be the PR of CV in cell j at time n. By the definition of the PR, the PR can be estimated by

p̂nj =

∑
i∈Ij

∑
m∈Mn

rmi∑
i∈Ij

∑
m∈Mn

∆xkmi
, (9)

where Ij andMn represent given sets of time and space where SIS observation was conducted, by which PR of (j, n)
is estimated. These sets are defined as Ij = {i | j−XI/∆x ≤ i ≤ j+XI/∆x} andMn = {m | n−TM/∆t ≤ m ≤
n, m ∈ S} with given window sizes XI and TM , meaning that the PR is estimated using data from nearby location
by recent SIS observation. Note that the number of CVs rnj is always known without error.

Supposing that rnj CVs are randomly sampled with PR pnj in a cell, the number of total vehicles ∆xknj in the cell
follows a negative binomial distribution with number of trials rnj and success rate 1 − pnj . Therefore, by introducing
Gaussian approximation, the density measured by CVs’ PR can be approximated as

k̂nj ∼ N

(
rnj

∆xp̂nj
,
rnj (1− p̂nj )

(∆xp̂nj )2

)
' N

(
knj ,

rnj (1− p̂nj )

(∆xp̂nj )2

)
. (10)

This Gaussian approximation is accurate if pnj and/or ∆xknj were sufficiently large.

3.4.3. FD estimated by CV and SIS
The FD parameters in a sufficiently large time–space region can be estimated by applying the methods of Seo et al.

(2017b, 2018) whose inputs are trajectories of CVs and the jam density obtained by SIS. The jam density can be
obtained by SISs by measuring density of cells with zero CV speed. The errors can be approximated as

û ∼ N
(
u, σ2

U

)
, (11a)

κ̂ ∼ N (κ, (pM + pD)κ+ pF /∆xs) , (11b)

k̂c ∼ N (kc, (pM + pD)kc + pF /∆xs) , (11c)

based on Eq. (3), where σU represents an empirically known error of the FD estimation method. These estimates are
directly used by the FD in the system model.

3.4.4. Density inferred by CV speed and FD
The speed in an arbitrarily time–space region can be directly measured by CVs. This can be converted to density

via an FD-based mapping, although this mapping has relatively large error (Herrera and Bayen, 2010; Seo and Bayen,
2017). It can be expressed as k̂nj = V −1(v̂nj ), where V represents speed–density FD (estimated by Section 3.4.3), and
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vnj represents speed of cell j at time step n measured by CV. Thus, this mapping can be approximated as

k̂nj ∼ N

knj ,
(
σFD +

σV√
rnj

)2
 , (12)

where σFD represents an empirically known error of this FD-based mapping from speed to density, σV /
√
rnj represents

speed estimation error by rnj CVs (Seo and Bayen, 2017), and σV represents its empirically known error.

3.4.5. Integration of the every observation
By integrating observation components in Sections 3.4.1–3.4.4, the observation model Hn and error Rn can be

formulated. The outline of the derivation is as follows (the details are omitted due to the space limitation). Notice that
the set of Eqs. (8) and (10)–(12) can be rewritten in a form of yn = Hnxn +ωn, identical to the observation equation
(5). From this fact,Hn andRn can be formulated. Namely,Hn is a rectangular matrix that is constructed by horizontally
stacking diagonal matrices whose elements are either 0 or 1 depending on the availability of each observation. The
matrix Rn is a diagonal matrix whose elements corresponds to the variances in Eqs. (8) and (10)–(12).3

4. Verification

Quantitative features of the proposed method were verified based on numerical simulation. Specifically, relation
between TSE accuracy and data quality/quantity were investigated by conducting so-called twin experiments.

4.1. Simulation setting

Traffic for 4 hours on approximately 10 km length highway with a bottleneck is considered. The FD parameters
are u = 80 (km/h), kc = 30 (veh/km), and κ = 200 (veh/km). The bottleneck is expressed by qmax = 0.6ukc. The
discretization widths are ∆t = 1/120 (h) and ∆x = 1.1u∆t ' 0.733 (km). Ground truth traffic state was generated by
CTM with an an appropriate initial and boundary conditions to mimic partially congested highway traffic in morning
peak hours as shown in Fig. 3a; propagation and dissipation of traffic jam due to the bottleneck can be observed.

SIS observation is assumed to be conducted with a given, constant time interval ∆tS . This interval and the accuracy
parameters, namely pM , pD, and pF , are subjects of sensitivity analysis. The scan window for detecting one vehicle is
assumed as ∆xS = 0.001 (km). Widths for PR estimationXI , TM are specified to cover the entire time–space region.
CVs are randomly generated in the upstream boundary flow following a binomial distribution whose mean is a given
PR, denoted by pCV, and they travel with the rest of traffic. It means that actual PR in each cell does not necessarily
identical to pCV. The value of pCV is also a subject of sensitivity analysis. The uncertainty of the components of the
TSE method are specified as σFD = 20, σV = 20 (veh/km) and σU = 5 (km/h).

4.2. Results

The result of a base case scenario is shown in Fig. 3b as a time–space diagram. The parameters for this scenario are:
∆tS = 1 (h), pM = pD = 5%, pF = 0.5% (meaning that expected false-positive per km is 5 veh), and pCV = 10%.
The estimates reproduced the ground truth fairly accurately. Its error statistics are 6.186 veh/km of root mean square
error and 17.3% of mean absolute percentage error (MAPE), which can be considered as accurate TSE.

The density observed by each observation component is shown in Fig. 4. The stripe pattern in Fig. 4b means that the
density estimated by PR is erroneous, because local PR is not necessarily equal to the expected PR pCV. The random
pattern in Fig. 4c means that the density estimated by the FD-based mapping has certain errors which is different from
Fig. 4b. By comparing Fig. 4 with Fig. 3, we can confirm that the EnKF successfully estimated more accurate density
by combining these relatively inaccurate observations.

3Note that the diagonal Rn means that correlation between observations is ignored. In reality, there may exist dependency between the
observations, as easily expected by Fig. 2. However, the results in Section 4 showed that this independent observation assumption was acceptable.
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(a) Ground truth (b) Estimate

Fig. 3: Time–space diagrams of density

(a) SIS measurement (b) PR-based inference (c) Speed-based inference

Fig. 4: Each of density observations

The results of sensitivity analyses on SIS/CV data availability and SIS accuracy are shown in Fig. 5. The parameter
sets are as follows: ∆tS ∈ {0.5, 1, 3} (h), pCV ∈ {1%, 5%, 10%, 20%, 50%}, and (pM , pD, pF ) ∈ {(1%, 1%, 0.1%),
(5%, 5%, 0.5%), (20%, 20%, 2%), (50%, 50%, 5%)}. Figure 5a shows relation between the data availability and the
TSE accuracy, under a fixed accuracy. According to the figure, the TSE accuracy significantly depends on the PR of
CVs; and it slightly depends on the SIS observation interval. This is a reasonable results, as the main contribution of
SIS is observation of the PR and the FD but not real-time density measurement.

(a) pM = 5% (b) ∆tS = 1 (h)

Fig. 5: Sensitivity analysis

Figure 5b shows relation between the SIS accuracy and the TSE accuracy. According to the figure, the TSE accuracy
basically improves as the SIS accuracy improved. However, opposing to the basic tendency, the TSE accuracy is low
in the cases with very small PR (pCV = 1%, 5%) and very accurate SIS (pM = 1%). This can be explained as follows.
When PR is small, Gaussian approximation of binomial distribution is biased and not accurate. Such inaccurate
Gaussian approximation would not affect final results substantially if SIS observation is not very accurate. Contrarily,
if SIS observation is accurate, such inaccurate approximation inflict negative effects to final results. To fix this issue,
special consideration to the approximation error (e.g., by adding a heuristic error term to the SIS observation model)
or use of the particle filter (i.e., to exclude the Gaussian approximation) are considerable.
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5. Conclusion

This paper proposes a traffic state estimation method that uses small imaging satellites and connected vehicles.
It endogenously estimates the fundamental diagram and penetration rate of CVs from SIS and CV data, so that the
method does not require any detectors nor extensive parameter calibration. Thanks to these features, the proposed
method would be useful to monitor surface traffic dynamics in large-scale areas. The accuracy of the proposed method
was verified by numerical simulation. It was found that the method was capable of estimating high resolution traffic
state based on accurate SIS observation combined with CVs with 10% or more penetration rate, and the independent
observation assumption and the Gaussian approximation in the method were acceptable expect for extreme cases.

As an expansion of the proposed method, consideration of network traffic flow dynamics (Kawasaki et al., 2017) is
valuable. Traffic volume estimation methods at signalized intersection using CV data and the FD (Wada et al., 2015;
Zheng and Liu, 2017) can also be incorporated. In principle, instead of SIS, other data collection technologies such
as unmanned aerial vehicles can be used without altering the formulation of the proposed TSE method; their adoption
would be also interesting. Application to actual data is another important direction, as this study found that availability
of SISs and CVs would be sufficient to implement the proposed method in the near future.
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