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Abstract

This paper presents a data driven, Recurrent Neural Network (RNN) based technique that models real world driving patterns without
domain knowledge to develop driving cycles for light duty vehicles (LDVs) in Beijing. In contrast to approaches that feature
sub-cycle selection from the original data set through Markov process and data clustering, our method models the conditional
probability distribution of vehicle speed with RNN, in which the driving cycles are generated step by step. As a consequence,
the presented method excludes the necessity for domain knowledge based feature extraction and corresponding data vectorization
during modelling stage. In the end of this paper, the proposed method is evaluated through comparisons between synthesized
driving cycle and the original data set based on 14 metrics. As the final results suggest, both of the cycles obtained from the two
models established are of relatively high power demand compared with the original data set, while one of the model is able to yield
driving cycles that are more inclusive in terms of velocity levels with less candidates, which, to some extent, makes it more suitable
for emission tests compared with the other one.
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1. Introduction

A driving cycle is a fixed schedule of vehicle operation which allows an emission test to be conducted under
reproducible conditions, as Barlow et al. (2009) defined. Over the past decades, the industry has witnessed both
proposals of various methods to develop driving cycles and further efforts adapting them to different regional traffic
conditions. Typically, driving cycles are represented as sequences of vehicle speed versus time. A driving cycle,
developed based on large amount of real world driving data, may serve as reference for emission & fuel consumption
evaluation, vehicle design & certification and other related applications. For such purposes, it is crucial that the driving
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Fig. 1. The NEDC is composed of 4 Urban Driving Cycles (known as ECE-15 or UDC), from 0s to 780s and a Extra-Urban Driving Cycle (EUDC)
from 780s to 1180s.

cycle developed should be representative enough in terms of the driving patterns, driver behaviors, regional traffic
conditions etc., in real world domain. The New European Driving Cycle (NEDC), once adopted in China for vehicle
certification, is a well-known driving cycle that features low level of acceleration, as illustrated in Fig. 1. However,
given that such sequence is not representative enough in terms of real-world driving patterns (e.g. the constantly
shifting speed in reality), and that it has been 20 years since the last update during which the driving condition has
changed over time in China, the NEDC is no longer the optimal solution. Additionally, it has been criticized for
underestimating the emissions on CO2 (Fontaras and Dilara (2012)), compared to other driving cycles developed.

To address these problems, new methodologies for driving cycle development have been proposed, many of which
feature sub-cycle (or modal sequence, micro-trip etc.) selection and concatenation (e.g. Grüner (2016); Gong et al.
(2011)). The final driving cycle is developed, by selecting sub-cycles from different clusters (through Markov Chains
or other techniques) and validating the concatenated sequence based on a set of metrics. Approaches of this kind
demand robust clustering algorithms and domain knowledge based feature extraction for each sub-cycle from the
original data, to achieve acceptable results.

In contrast to these approaches, methods that directly estimate the probability distributions on velocities, which
opt out the necessity for knowledge based data clustering, by minimizing empirical errors of predictions on velocity,
have been proposed by Bishop et al. (2012). Methods of this kind are able to generate driving cycles in which the
sub-cycles are not included in the original data set.

While Markov Models are very popular in driving cycle development and the methods illustrated above, both sub-
segment based and time stamp based, proved to be effective in terms of capturing some of the features related to
driving patterns, the Markov process eventually discards the information from previous sequences as new predictions
are made, given that each prediction at a specific time stamp takes into account only its previous hidden state, which
corresponds to the a velocity value (or alternatively a preceding sequence, a set of extracted feature etc.). In contrast to
commonly used the Markov Model based approaches, a Recurrent Neural Network (RNN) based model is established
to capture the characteristics of real world driving patterns in this paper. There are a few researches that utilize neural
network for capturing driving behaviors or traffic conditions, from data of the real world driving. Vaz et al. (2014)
used neural network for driving cycle classification task. Wang et al. (2015) made use of neural network algorithm for
driving cycle classification. But the performance of RNN for driving cycle development is yet to be well researched.
We aimed to explore, in this paper, how RNN will contribute to driving cycle development for Light Duty Vehicles
(LDVs) in Beijing.

2. Preliminaries

2.1. Problem Statement

The goal of this work is to obtain driving cycles that reflect driving pattern in Beijing as much as possible for fuel
consumption and emission tests, given data (e.g. timestamps and velocities) collected in real world domain. The main
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problem is to consolidate a large amount of data as a single sequence at feasible length for such applications, while
retaining the characteristics embedded in the original data.

The major contribution of this work is as follows: We obtained two final driving cycles from two separate sets
of candidates, each of which was generated by specifying the first few steps and expanding the sequence step by
step according to a conditional probability distribution of the vehicle speed at specific timestamp given the whole
precedent velocity sequence. An RNN based model that is able to take a sequence of any length as precedent and
yield predictions on Pr(vt+1|v0, v1, . . . , vt) by learning from the data set, was established in this work.

2.2. Fundamentals of RNN

An RNN is formed by a variable number of identical RNN cells connected together, where each cell utilizes the
state yielded by the previous one. In this paper, an RNN cell is defined as a unit that takes both an input vector xt and
a state vector st as its inputs, and yields st+1 = f (xt, st; Θs), the updated state, and an output vector yt = g(st+1; Θy),
where Θs, Θy are the set of pre-trained parameters of the cell that parameterize f , g, the functions that impart non-
linearity. One of the RNN cell used in this paper, denoted as Vanilla RNN Cell, is defined as

st+1 = φ1(Whhst + Wxhxt + bh) (1)

yt = φ2(Whost+1 + bo) (2)

where

• t ∈ N denotes the timestamp,
• st, st+1, xt, xt+1 ∈ RN are hidden states and inputs at corresponding timestamps,
• yt ∈ RN is the network output for time t,
• Who,Whh,Wxh ∈ RN×N and bo, bh ∈ RN are weights and biases that parameterize the model and,
• φ1(·) and φ2(·) are non-linear activation functions for updating hidden states and calculating output, respectively.

With st updated constantly, an RNN cell is able to

• allow the information in preceding input sequence to persist, and
• yield different outputs even for the same input vector xt.

3. RNN Based Conditional Probability Distribution Modelling and Driving Cycle Development

3.1. Velocity Prediction

In this paper the velocities of vehicles are confined to a set of discrete values denoted as v(i) ∈ S, i = 1, 2, . . . , |S|.
The value of input for RNN at each timestamp, xt, is given by encoding vt = v(i), v(i) ∈ S as a |S| dimensional vector,
where all entries are zero except for the ith, which is one (denoted as one-hot encoding). To make prediction on the
conditional probability distribution on vt+1, we made use of yt to parameterize a multinomial distribution, yielding

Pr(vt+1|v0, v1, . . . , vt) ≈ Pr(vt+1|s0, x0, x1, . . . , xt) = Pr(vt+1|yt) (3)

Pr(vt+1 = v(k)|yt) = so f tmax(yk
t ) (4)

so f tmax(yk
t ) =

eyk
t∑|S|

i=1 eyi
t

(5)

. Therefore the conditional probability of a specific output sequence v (v̂1, v̂2, . . . , v̂T ), given input sequence x
(x0, x1, . . . , xT−1) and the initial state s0, is computed as

Pr(v|x, s0) =

T−1∏
i=0

Pr(vt+1 = v̂t+1|yt) (6)
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. Therefore the loss function of the model (l.e. the penalty for divergence in the conditional probability distributions
between prediction and the reality) based on MLE (Maximum Likelihood Estimation) is defined as

L(x, v) = −

T−1∑
t=0

log Pr(vt+1 = v̂t+1|yt) (7)

.

3.2. The DRNN Structure

In this paper a Deep Recurrent Neural Network (DRNN) structure, achieved by forming a large RNN cell composed
of multiple inner RNN cells and some cross layer connections, is established. For cell in each layer, the input vector
consists of

• the outputs from its previous layer (for the first layer this part of input is excluded) and,
• the input of outer cell1.

And outputs of the outer cell is formed by the weighted outputs from RNN cells of each layer plus a bias vector,
defined as

yt = bo +
∑

i

Whioyhi

t (8)

where

• yt is the output of the outer cell at time t and,
• yhi

t ∈ RNhi denotes the output of the cell in ith layer at time t.

With such structure, each inner cell is able to learn its own version of state vector given the input sequences. The cross-
layer connections allow the outer cell to weight each state vector its inner cells has produced to make prediction.

3.3. Driving Cycle Development

For each sub-sequence the training set, the loss defined in (7) is iteratively minimized through adjusting parameters
in Θs∪Θy according to the gradients of loss function with respect to the parameters. Once the model had been trained,
each of candidates was generated step by step 2, as illustrated in algorithm 1. Each candidate was clipped by simply
selecting its longest subsequence (that starts with t = 0) such that the last value of the subsequence equals to zero. In
validation stage, all candidates in DC will be ranked based on its proximity to the original data set in terms of features
that are related to emissions and energy consumptions of Light Duty Vehicles (LDVs). In this paper each candidate was
evaluated through relative errors on features (specified in Table 1) with respect to the corresponding values calculated
from the whole data set. To evaluate level of service for each driving cycle, the mean tractive force (MTF) introduced
by Nyberg et al. (2015, 2016) and the corresponding features were calculated, based on the parameter configuration
specified in Table 2.

4. Experiments

The data used in the experiments, starting from January 1st to October 30th, 2017, adding up to a total of 122.9
thousand kilometers, are collected from 9 LDVs at 1Hz. As a paradigm for driving cycles development, data are
continuously collected through terminal devices installed on these registered vehicles that freely roamed in Beijing.

1 Before being connected to each layer, the input of outer cell are transformed by pre-multiplying a weight matrix for dimensional compatibility.
2 In case of driving cycle development, the relatively small probabilities of those non-achievable velocities are truncated for prediction while

generating driving cycle candidates.
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Algorithm 1 Driving Cycle Synthesis
Input:

S: the initial state for RNN cell
P: the first K velocity values of the sequence to be generated (v̂0 = 0, v̂1, . . . , v̂K−1)
T: an integer that determines the maximum length of the sequence to be generated
M: the pre-trained DRNN model parametrized by Θs,Θy

E: the encoding function for discretized velocities
C: the function for clipping the driving cycle
Output:

DC: A set of driving cycles candidates yielded by the model.
1: while within computational cost do
2: s0 = S
3: for t in 0, 1, . . . ,T − 1 do
4: xt = E(v̂t)
5: st+1 = f (st, xt; Θs)
6: yt = g(st+1; Θy)
7: Sample v̂t+1 through Pr(vt+1|yt)
8: DCraw = v̂0, . . . , v̂K−1, v̂K , . . . , v̂T

9: Add C(DCraw) to DC
return DC

Table 1. Features for Evaluation

Feature Description Metric

ηidle % of time standing -
ηaccel % of time accelerating -
ηcruise % of time cruising -
ηdecel % of time decelerating -
vavg average speed km/h
vavgm average speed during motion km/h
vmax maximum speed km/h
∆v+

bound max speed increment km/(h · s)
∆v−bound max speed decrement km/(h · s)
|v̈|max jerkiness index m/s3

F̄trac mean tractive force (MTF) N
α MTF component m2/s2

β MTF component -
γ MTF component m/s2

Table 2. Parameter Configurations for calculation of MTF components

Parameter Description Value Metric

A f frontal area 2.15 m2

cd drag coefficient 0.4 -
cr rolling resistance coefficient 0.013 -
m vehicle mass (no cargo) 1250 kg
ρair air density 1.29 kg/m3

g gravitational constant 9.80151 m/s2

In these experiments, the original data, ordered by the registration code of the vehicles), were split into 95020 micro
trips. The first 85% of data (70% for training set and 15% for validation set) are used for training the DRNN based
model.



6 Duoguan Qiu, Yuan Li and Dapeng Qiao / Transportation Research Procedia 00 (2018) 000–000

Fig. 2. Visualization of prediction on conditional probability distribution of velocity at each timestamp, given a real driving cycle as the input of
the DRNN model. The brightness of pixel at coordinate (t, i) indicates the conditional probability of v(i) at time t, given its corresponding input
sequence (v0, v1, . . . , vt−1).

4.1. The Velocity to Velocity Approach

In this experiment, the model directly predicts the probability of velocities, which is denoted as ”V2V Approach”
in this paper. We used GRUs (Gated Recurrent Units introduced by Cho et al. (2014)), to form the inner cells of the
DRNN model. Parameters that define the structure of the network are specified in Table 3.

Table 3. Configuration of the Network in ”V2V Approach”

Item Value

Dimension of xt 713
Dimension of yt 713
Dimension of st 100 × 6
Number of Layers 6
Type of Cell GRU

The dimension of xt and yt corresponds to a resolution of 0.2 km/h in velocity. After training the network eventually
captures the conditional probability distribution of velocity at each timestamp, as visualized in Fig. 2.

4.2. The Velocity to Velocity Increment Approach

This experiment, denoted as ”V2DV Approach”, aims to reduce the computational cost by limiting the complexity
of the model. In this experiment, the DRNN model predicts the increment of velocity instead, by changing equation
(4) to Pr

(
(vt+1 − vt) = v(k)|yt

)
= so f tmax(yk

t ), which reduces the dimension of output vectors. We further simplified
the computations by using the ”Vanilla RNN Cell” described in the previous sections as inner cells of the model. The
whole configuration is specified in Table 4.

Table 4. Configuration of the Network in ”V2DV Approach”

Item Value

Dimension of xt 713
Dimension of yt 154
Dimension of st 100 × 6
Number of Layers 6
Type of Cell Vanilla RNN Cell

4.3. Driving Cycle Generation and Validation

For both approaches the maximum length of each candidate is set to 1000. Candidates generated from both ap-
proaches (100 for ”V2V Approach” and 2000 for ”V2DV Approach”) were separately ranked once the models are
trained. The final driving cycles obtained are illustrated in Fig. 3 and Fig. 4.
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Fig. 3. The Generated Driving Cycle from ”V2V Approach”

Fig. 4. The Generated Driving Cycle from ”V2DV Approach”

And the values of features listed in Table 1 and corresponding relative errors (in parentheses) with respect to the
whole data set are shown in Table 5.

4.4. Remarks

As is shown in Fig. 3 and Fig. 4 that while vehicle speed constantly changes over time, both driving cycles contain
jerky sub-sequences. As Table 5 suggests, both our candidates had underestimated the fractions in which velocity
stays still (e.g. ηidle, ηcruise), which results in more accelerations and decelerations in the driving cycle compared
to the original data set. In terms of consolidating data for LDVs operating at high speeds, the ”V2V Approach”
outperforms the other with less candidates, as vmax of its best candidate reached 120.0 km/h, compared with 65.0
km/h, the counterpart, which makes the former cycle more suitable for evaluating emissions in highway driving.

The error on F̄trac indicates that both candidates are very power demanding, which poses tendencies of overesti-
mation on fuel consumption in vehicle certification. While the α component of MTF, which reflects driving pattern
in terms of air drag applied to the vehicle was successfully captured by candidate from ”V2V Approach” with an
error of 1.5%, results on component β and γ, which indicates the cost for overcoming rolling resistance and inertia,
respectively, are of less satisfaction. Further adjustment on both models should be expected to address this issue.
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Table 5. Evaluation of Driving Cycle Generated

Feature V2V Approach V2DV Approach Metric

ηidle 1.45%(−94.0%) 18.81%(−22.8%) -
ηaccel 44.76%(+132.7%) 34.73%(+80.6%) -
ηcruise 14.12%(−62.6%) 12.28%(−67.5%) -
ηdecel 39.67%(+113.2%) 34.18%(+83.7%) -
vavg 28.6(+19.5%) 16.52(−31.0%) km/h
vavgm 29.0(−8.2%) 20.35(−35.7%) km/h
vmax 120.0(−15.7%) 65.0(−54.4%) km/h
∆v+

bound 14.4(−40.0%) 14.4(−40.0%) km/(h · s)
∆v−bound 16.0(−33.3%) 16.2(−32.5%) km/(h · s)
|v̈|max 8.1(−21.7%) 8.4(−18.5%) km/(h · s2)
F̄trac 600.35(+83.6%) 453.11(+38.6%) N
α 151.92(+1.5%) 61.04(−59.2%) m2/s2

β 0.63(−21.1%) 0.67(−15.9%) -
γ 0.33(+257.5%) 0.25(+168.4%) m/s2

ttotal 962 903 s

5. Future Work

In the future, different configurations for the RNN model should be tested to better balance the tradeoff between
model complexity and the quality of the final driving cycle. The current jerkiness and high power demand of the
candidates resulted from the model should be addressed to make the final candidate more convincing and feasible
for vehicle certification related purposes. In addition, the ranking for candidates should be improved by taking into
account more features and applying weights for each of them with further analyses to obtain more realistic results.
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Grüner, J., 2016. A tool for generating individual driving cycles - idcb. Sae International Journal of Commercial Vehicles 9.
Nyberg, P., Frisk, E., Nielsen, L., 2015. Driving cycle equivalence and transformation. IEEE Transactions on Vehicular Technology PP, 1–1.
Nyberg, P., Frisk, E., Nielsen, L., 2016. Using real-world driving databases to generate driving cycles with equivalence properties. IEEE
Transactions on Vehicular Technology 65, 4095–4105.
Vaz, W., Landers, R.G., Koylu, U.O., 2014. Neural network strategy for driving behavior and driving cycle classification. International Journal
of Electric & Hybrid Vehicles 6, 255–275.
Wang, J., Wang, Q.N., Zeng, X.H., Wang, P.Y., Wang, J.N., 2015. Driving cycle recognition neural network algorithm based on the sliding
time window for hybrid electric vehicles. International Journal of Automotive Technology 16, 685–695.


