
Available online at www.sciencedirect.com

Transportation Research Procedia 00 (2018) 000–000 www.elsevier.com/locate/procedia

International Symposium of Transport Simulation (ISTS’18) and the International Workshop on
Traffic Data Collection and its Standardization (IWTDCS’18)

Route Choice Analysis in the Tokyo Metropolitan Area Using a
Link-based Recursive Logit Model Featuring Link Awareness

Noriko KANEKO∗,a, Hideki OKAa,b, Makoto CHIKARAISHIc, Henrik BECKERd,
Daisuke FUKUDAa

aTokyo Institute of Technology, Ookayama 2-12-1-M1-11, Meguro-ku, Tokyo 152-8552, Japan
bThe Institute of Behavioral Sciences, Ichigayahonmuracho 2-9, Shinjyuku-ku, Tokyo 162-0845, Japan

cHiroshima University, Kagamiyama 1-5-1, Higashi-Hiroshima 739-8529, Japan
dSwiss Federal Institute of Technology, Zürich CH-8093, Switzerland

Abstract

Identification of an appropriate route choice model to understand travel behavior remains challenging. To this end, Fosgerau et al.
(2013) have recently developed a link-based route choice model termed the “recursive logit” (RL) model. A decision-maker is
assumed to choose the next link recursively that maximizes the sum of instantaneous utility and expected downstream utility at
each node. However, in practical application, some computational issues remain, including large (and often ill-defined) matrix
inversions. Here, we develop an alternative RL model that considers the probability of awareness of the next link that improves the
stability of model estimations. The model was estimated using vehicle trajectory data from the ETC (Electronic Toll Collection) 2.0
dataset of the Tokyo Metropolitan area, and the results were compared to those of a conventional RL model in terms of predictive
accuracy and computational efficiency.
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1. Introduction

A metropolitan inter-city expressway and an outer ring road are currently under construction in the Tokyo
Metropolitan Area (TMA); these are expected to drastically reduce downtown through-traffic. Also, the highway
tolling systems have changed dramatically. For example, a seamless highway toll system was introduced in 2016 and
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a congestion tax on arterial roads is under consideration. Thus, an accurate and detailed route choice model is essential
for quantitative evaluation of travel plans and policies. Path-based models have been used to construct route choice
models. However, given very large traffic networks such as the TMA, the number of route alternatives is enormous
and the construction of feasible sets of choices is computationally demanding. To cope with this issue, Fosgerau et al.
(2013) recently proposed a recursive logit (RL) model in which a traveler chooses the next link to maximize the utility
at each node, rather than choosing a single route ab initio. Several applications of the RL model later appeared in the
literature. Mai et al. (2015) developed a nested RL model that considered link correlations. Mai et al. (2016) used a
decomposition method to evaluate multiple destinations efficiently. Recently, Chikaraishi et al. (2016) and Oka et al.
(2017) applied an RL model to a large proportion of the TMA using trajectory data from large trucks.

The RL model has a considerable potential for modeling large-scale route choices behavior. However, the model
is inherently unstable and computationally burdensome when applied to large-scale networks. To solve these issues,
we here integrate the concept of awareness probability into an RL model. Specifically, we introduce “IAP” (the
perception/availability of an alternative implicit in the choice model, as proposed by Cascetta et al. (2001)) into the
RL model. It then becomes possible to restrict many alternatives to a more feasible set of choices in a stochastic
manner, contributing to the avoidance of cyclic routes. This is the first study to use the detailed vehicle trajectory data
of personal cars traveling in the TMA (the “ETC 2.0” dataset), combined with detailed road network attributes such
as tolls, road widths, and numbers of lanes.

2. Data

We used a digital road map (DRM) 1 as a basic network data, and vehicle trajectories from the ETC 2.0 2 database
as observational data. The DRM was prepared by the Japan Digital Road Map Association and contains the original
link IDs, node IDs, link lengths and widths, longitudes, latitudes, and lane numbers. The ETC 2.0 is collected by
the Ministry of Land, Infrastructure, Transport, and Tourism of Japan, and contains vehicle trajectory data for private
cars fitted with on-board devices of generation 2.0. The market share of ETC 2.0-equipped vehicles has gradually
increased. Our target was an 80km×80km area including the TMA. We chose 70 downtown destination points asso-
ciated with heavy traffic flow, as shown in Fig.1. The points were selected as follows: (1) five points from each red

Fig. 1. 80km×80km target area and the destinations

1 http://www.drm.jp
2 https://www.go-etc.jp/english
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mesh (the 10 most-congested meshes); and (2) two points from each pink mesh (the 20 most-congested meshes). The
details are shown in Table.1.

Here, we analyze data from Oct. 16, 2016 (a Sunday); most trips were thus leisure trips. Also, departure points
were taken to be at the edges of the target area if the trips commenced outside the target area. Thus, the data will
include both long- and short-distance trips. We divided all trips into long, medium, and short trips (> 30, ≥ 10 but
< 30, and < 10km, respectively) Fig.3 shows trip length distributions and Table.2 shows trips by length. The area
features various links (Fig.2). Almost all roads were of Type 9 (minor roads). Also, Fig.4 and Fig.5 show that link
length distributions depended on road type. The higher the rank of road type, its link length tends to be longer. For
example, the average link length for Road Type 2 was 403 m, whereas that for Road Type 9 was 172 m. The standard
deviation of road length for Road Type 2 was 488 m, and that for Road Type 9 was 176 m.

Table 1. Trip data specifications
Date for analysis Oct. 16, 2016 (Sun.)

Target area The right chart (80km×80km) in Fig.1
Number of trips 13,622
Number of links 228,387
Number of destinations 70
Average number of link selections 75.2

Fig. 2. Road type distribution

Table 2. Four types of trips by trip length
Group name Target Number of

trips

Group 1 All trips 13,622

Group 2 Long trips 4,128
(30km∼)

Group 3 Medium trips 5,999
(10km∼30km)

Group 4 Short trips 3,495
(∼10km)

Fig. 3. Trip length distributions
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Fig. 4. Link length distributions for Road Type 2 (urban expressways) Fig. 5. Link length distributions for Road Type 9 (minor roads)

3. Modeling Methodology

3.1. A recursive logit model

In this section, following Fosgerau et al. (2013), we briefly introduce the RL model and its use for estimations. In
network G = (A, ν), we define ν as a set of nodes, A as a set of links (k, a ∈ A), A(k) as a set of outgoing links from k,
and n as a traveler. In each state k, a traveler chooses link a (from the set of outgoing links A(k)) that maximizes the sum
of instantaneous utility and expected downstream utility. Instantaneous utility is defined as the sum of deterministic
and stochastic utility, as shown in Eq.(1). The random terms εn(a) are assumed to be of i.i.d. extreme-value type 1,
thus with zero means, and are independent of all other model components; µ is a scaling parameter.

un(a|k) = vn(a|k) + µεn(a) (1)

The downstream utility is the expected utility at the destination, as given by Eq.(2). This is obtained from the
Bellman equations (Rust (1987)) as Eq.(3).

Vd
n (k) = E[ max

a∈A(k)
(vn(a|k) + Vd

n (a) + µεn(a))] (2)

z = Mz + b⇔ (I − M)z = b (3)

Here, we define I(|Ã|×|Ã|) as the identity matrix, M(|Ã|×|Ã|) as the incidence matrix defining instantaneous utilities,
z(|Ã| × 1) as a vector with elements zk = exp

(
1
µ
V(k)

)
, b as (|Ã| × 1) a vector with elements bk = 1 (if k , d), bd = 1.

When the matrix I − M has an inverse matrix, the Hawkins-Simon condition (Hawkins and Simon (1949)) should
be satisfied, and V(k) can then be described quantitatively. When a traveler n = 1, ...,N is characterized by his/her
link choices σn(n = 1, ...,N), where σn consists of a set of links from the origin to the destination represented by
k0, k1, k2, ..., kIn−1, kIn ,the log-likelihood function used to estimate parameters of interest is given as Eq.(4)

max
β

LLn(β) =
1
N

N∑
n=1

ln P(σn;β)

=
1
µ

N∑
n=1


In−1∑

i=0

ν(kn
i+1 |k

n
i )

 − V(kn
0)

 (4)

3.2. Introducing link awareness

We restrict the link sets available for choice in a stochastic manner by introducing the IAP concept. The likelihood
that link a is included in the choice set A(k) of outgoing links from k is given by λA(k)(a) (0 ≤ λA(k)(a) ≤ 1). Then,
the instantaneous utility can be reformulated as Eq.(5); thus, the sum of deterministic and stochastic utility, and link
awareness:

un(a|k) = vn(a|k) + ln λA(k)(a) + µεn(a) (5)
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When λA(k)(a) = 0, the probability of awareness is 0%. Likewise, when λA(k)(a) = 1, the probability of awareness
is 100%. The probability that a given alternative j will be chosen may be expressed as Cascetta et al. (2001). Here, λ
is the average value of λ.

pi( j) = Pr(U i
j ≥ U i

h) (6)

= Pr
(
σi

h − σ
i
j ≤ V i

j + ln λ
i
c( j)) − 1 − λi

c( j)

2λ
i
c( j)

− V i
h − ln λ

i
c(h) +

λ
i
c(h)

2λ
i
c(h)

)
(7)

Under the simple assumption that the random residuals σi
j are independent and identically Gumbel(0, α) dis-

tributed, the choice probability can be expressed using a simple, multinomial logit model.

pi( j) =

exp
[
α
(
V i

j + ln λ
i
c( j) − 1 − λi

c( j)

2λ
i
c( j)

)]
∑

n exp
[
α
(
V i

j + ln λ
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c( j) − 1 − λi

c( j)

2λ
i
c( j)

)] (8)

In Cascetta et al. (2001), the scale parameter α was set to 1. However, here, this was not the case; the parameter is
estimated, as are all other parameters.

However, it is difficult to measure the extent of awareness λA(k)(a). Thus, here, we sequentially estimate awareness
using a binary logit (BL) model. Awareness can be expressed as Eq.(9). The BL model is applied whether each link
was actually used by drivers. The BL model of link awareness is then formulated as:

λ
i
c( j) =

1

1 + exp
(
−∑

k γkY i
k j

) (9)

where, Y i
k j : variables correlated with awareness/availability of each alternative, γk : coefficient relative to Y i

k j
attributes. In the BL model, Road Types are used as variables explaining the extent of awareness. The DRM road
Types are 1: Highway, 2: Urban expressway, 3: National arterial road, 4: Major regional road (prefecture), 5: Major
regional road (city), 6: General prefectural road, 7: General city road, 9: Other road (i.e., small streets), and 0: not
surveyed.

4. Estimation Results

4.1. Computing link awareness

4.1.1. Model Specification
In the BL model of link awareness, Road Type 4 [Major regional road (prefecture)] served as the baseline. As the

number of roads of Type 5 [major regional road (city)] was small in our area,(< 100 of 1,118,027 links), this Type was
excluded from the estimation. Also, we further considered that urban and suburban areas differ, especially in terms
of Road Types 2 and 9. Thus, we introduce interaction terms for these road types and urban areas; the latter included
only four meshes within the circular road of the metropolitan expressway.

Consequently, the IAP specified in Eq.(10) include dummy variables for road Types 1, 2, 3, 6, 7, and 9; interaction
terms for urban areas and road Types 2 and 9; and an alternative-specific constant (ASC) for the explanatory variables.
In this estimation, weights (the observed usage numbers of each link) were considered because the number of times
that links are used by travelers may explain the extent of awareness.

−
∑

k

γkY i
k j = −γtype1 xtype1Dummy − γtype2 xtype2Dummy − γtype3 xtype3Dummy − γtype4 xtype4Dummy − γtype6 xtype6Dummy − γtype7 xtype7Dummy

−γtype9 xtype9Dummy − γtype2urban xtype2Dummyurban − γtype9urban xtype9Dummyurban + AS C (10)

4.1.2. Estimation results of link awareness term (BL model)
Table.3 shows the outcomes of the BL model of Eq.(3). The signs of all parameters are intuitively consistent, and

were statistically significant. Also, the relative magnitudes of the parameters are plausible: the higher the road grade,
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the greater the awareness. Particularly, both highways (Types 1 and 2) were more likely to be recognized by drivers.
The interaction terms among road Types 2, 9, and urban areas were significantly positive. Fig.7 lists the IAP-computed
probabilities for each link.

Table 3. Estimations of link awareness terms
Parameter Estimates t-value

Road Type 1 (Highway) 4.26 38.25
Road Type 2 (Urban expressway) 6.38 37.71
Road Type 3 (National arterial road) 1.08 68.33
Road Type 4 (Major prefectural road) - -
Road Type 6 (General prefectural road) -0.87 -60.94
Road Type 7 (General city road) 2.76 25.5
Road Type 9 (Other road ) -3.03 -261
Road Type 2 × Urban dummy 0.80 2.06
Road Type 9 × Urban dummy 0.68 62.1
ASC (Utilized) 2.54 268
Sample Size 1,118,027
LL(0) -774,957
LL(f) -201,337
ρ2 0.740

Fig. 6. Road type distribution Fig. 7. Computed probability of IAP-mediated recognition of each link

4.2. Estimating RL route choice model

4.2.1. Specification of the utility function
The basic instantaneous utility from k to a v(a|k) is defined as Eq.(11). We compared two models: model 1 consid-

ered link awareness whereas model 2 did not.

vn(a|k) = βtime xtime + βlength xlength + βcost xcost + βwidth xwidth + βUturn xUturn + βRturn xRturn (11)

where xtime: is the travel time of link a (sec), xlength: the length of link a (m), xcost:the travel cost of link a (JPY),
xwidth:the width of link a (m), xRturn:a dummy variable when the angle between link pair k−a is 70◦∼175◦, and xUturn:a
dummy variable when the angle between link pair k − a is 175◦∼185◦. As cars drive on the left in Japan, xRturn also
served as an explanatory variable.

4.2.2. Estimations of the route choice model
The estimation results of the two models (model 1 with awareness and model 2 without) for each type of trip

are shown in Table.4. In both models, almost all parameter signs were intuitively consistent, and all parameters are
statistically significant. In all cases, the travel time (i.e., the ratio of the time to the cost parameter) are reasonable.
Thus, the model yielded significant information.
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However, the time parameter for Group 2 was small; the t-value was not significant. Thus, drivers who travel long
distances tend to be strongly influenced by the awareness term. Some are not familiar with the area, and thus tend to
use major roads including highways, not minor roads. Also, when traveling long distances, highways (road Types 1
and 2) are used to shorten travel time. On the contrary, for Group 4, no significant difference between models 1 and
2 was apparent; those who drive only within small areas know the roads well; the awareness term is not significant.
This makes sense; such drivers do not use highways. The characteristics of Group 3 were intermediate between those
of Groups 2 and 4; this is reasonable because Group 3 includes equal numbers of those who do and do not know the
area, and those who want to travel faster or slower. However, model 1 was slightly better in terms of the Max LL data
for Groups 1 and 3; awareness explained driver diversity.

In terms of computational time3, that for the model including awareness was longer because more parameters were
included. Thus, when drivers cover considerable distances, the awareness term is useful.

5. Conclusions and Future Works

We developed an RL model featuring link awareness for large-scale analysis of route choices, and evaluated its
accuracy and efficiency using vehicle-trajectory data from the TMA and detailed road attributes. The method works
well when evaluating long-distance trips, despite the large computational load. Sometimes, the conventional method
(i.e., a model without link awareness) yields unstable estimations if the network is large. Under such circumstances,
the awareness term is useful. However, the awareness is not important when drivers are familiar with the roads, and
travel only short distances; the computational time is then excessive. Thus, awareness should be included only when
appropriate. This study is the first to include a mental influence using the IAP method; this is a potentially important
factor. Only the road type and interaction terms were used to define awareness. However, other factors (such as the
number of lanes) may affect the term; further research is necessary.
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Table 4. Model estimations for all trips
Results of Group 1

Results with awareness Results without awareness
Parameter Estimates t-value Estimates t-value
βtime (sec) −8.73 -14.94 −8.06 -10.35
βlength (m) −10.37 -14.94 −10.44 -4.40
βcost (JPY) −10.68 -12.54 −10.33 -11.65
βwidth (m) 9.62 3.02 10.59 7.08
βUturn −97.87 -24.04 −106.8 -112.7
βRturn −109.8 -35.66 −104.6 -213.5
βAwareness 10.08 7.88 − -
Sample size 13, 622 13, 622
Max LL −572, 150 −732, 832
Value of time (JPY/hour) 58.25 60.63
Computational time (hour) 57.3 24.3

Results of Group 2
Results with awareness Results without awareness

Parameter Estimates t-value Estimates t-value
βtime (sec) −10.06 -3.20 −6.15 × 10−2 -0.32
βlength (m) −9.52 -2.65 −8.62 -10.55
βcost (JPY) −10.13 -4.49 −13.17 -17.37
βwidth (m) 10.18 34.09 11.31 12.11
βUturn −101.8 -225.6 −107.2 -2.01
βRturn −101.2 -113.2 −161.9 -8.53
βAwareness 10.14 5.67 − -
Sample size 4, 128 4, 128
Max LL −679, 804 −17, 853
Value of time (JPY/hour) 56.38 58.37
Computational time (hour) 53.56 24.5

Results of Group 3
Results with awareness Results without awareness

Parameter Estimates t-value Estimates t-value
βtime (sec) −9.66 -9.97 −10.09 -6.83
βlength (m) −10.33 -5.28 −9.97 -49.6
βcost (JPY) −10.44 -17.62 −10.24 -22.5
βwidth (m) 9.83 4.08 9.93 150.6
βUturn −104.3 -50.65 −102.1 -112.5
βRturn −98.26 -102.6 −100.3 -29.5
βAwareness 10.09 10.45 − -
Sample size 5, 999 5, 999
Max LL −1, 219, 180 −1, 503, 239
Value of time (JPY/hour) 59.36 60.89
Computational time (hour) 42.29 31.03

Results of Group 4
Results with awareness Results without awareness

Parameter Estimates t-value Estimates t-value
βtime (sec) −10.68 -63.84 −9.81 -23.6
βlength (m) −10.10 -7.75 −10.14 -7.86
βcost (JPY) −9.99 -9.03 −10.01 -10.23
βwidth (m) 10.42 15.73 10.25 43.5
βUturn −101.6 -35.75 −100.2 -10.25
βRturn −100.0 -28.79 −102.0 -98.79
βAwareness 9.57 5.60 − -
Sample size 3, 495 3, 495
Max LL −1, 062, 143 −1, 058, 921
Value of time (JPY/hour) 60.66 61.22
Computational time (hour) 56.16 23.6


