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Abstract

Predicting the traffic congestion over a relatively short period of time is of great importance for traffic management and public
safety. Previous methods require data from multiple sources and involve multiple parameters, such as traffic flow, volume, occu-
pancy, speed and ramp flow for the analysis of congestion. Congestion prediction is still a challenge due to the variety of data
sources required and the complex calculation of traffic parameters. Little research has examined the congestion prediction problem
from the image processing perspective, which considers only images as inputs and outputs. The advantage of image-based conges-
tion prediction is that it is direct and hence no intermediate parameters are needed. In this paper, we propose a deep-learning based
approach, called convolutional long short-term memory (ConvLSTM), to predict congestion maps in a specific region, which is
more informative and can provide not only the temporal changes of congestion level, but also the spatial distribution of the conges-
tion. The test on freeway I-80 E in San Francisco shows that the traffic congestion can be accurately predicted with an accuracy up
to 88%.
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1. Introduction

Short-term traffic congestion prediction has been a very important topic as traffic congestion could cause increased
travel time and extra harm to the environment. It has been estimated that the costs caused by congestion will in-crease 
approximately 50% by 2020 (Bureau of Transport and Regional economics (2015)). As the sensors technology 
development and computational advances enable researchers to collect real-time data and predict at very high 
temporal resolutions, prediction of traffic congestion has been a vital component of intelligent transportation system 
(ITS).
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Over the past few decades, many research efforts have been made in the area of traffic congestion prediction
(Vlahogianni et al. (2004, 2014); Suhas et al. (2017)). The traffic congestion prediction problem, viewed as a type
of time series prediction problem, concerns the estimation of the future values of congestion level based on current
and past data records. Previous methods can be divided into linear models and nonlinear models (Vlahogianni et al.
(2004)). The Auto-Regressive Integrated Moving Average (ARIMA) model assumes that the future value of a variable
is a linear combination of previous values and the errors. Furthermore, the model requires stationary time series,
where individual values do not fluctuate around the average values with obvious upward and downward trends. The
nonstationary time series should be differentiated before the analysis (Box et al. (2015)). Nonlinear models such as
neural networks are also frequently used in time-series prediction. Common neural networks are feedforward networks
and are often called the sliding window technique as the N-tuple input slides over the full training set to generate a
single output as the target of the network (Connor et al. (1994); Frank et al. (2001)). Current traffic data collection
techniques include loop detectors, automatic vehicle identification(AVI) system, and simulation. In general, traffic
parameters, such as traffic flow, volume, occupancy, speed, and ramp flow are calculated to capture and predict traffic
conditions. However, data collection from multiple sources and effective fusion of the data to perform congestion
analysis is still a challenge due to the variety of data source and the complex calculation of traffic parameters.

In recent years deep learning (LeCun et al. (2015)) has shown great performance in visual recognition tasks, such
as image classification (Krizhevsky et al. (2012)), pedestrian detection and tracking in images (Dollar et al. (2012)).
Deep learning is a machine learning method, which is good at extracting inherent features in data from the lowest
level to the highest level by using multiple-layer architectures or deep architectures. Furthermore many traffic image
database are available online. For example Google map and Here map, which can show real-time traffic congestion on
the map, provide comprehensive APIs for customers to access traffic images. The availability of such image sources
and the remarkable performance of deep learning methods motivates us to approach the traffic prediction problem
based on image processing techniques.

In this paper, we propose an innovative spatio-temporal deep learning method for congestion analysis from an
image processing perspective. The proposed method requires only historical congestion maps to predict future con-
gestion maps. This research provides insights to understanding the spatial and temporal patterns from traffic images
which could greatly simplify the prediction procedures. The contributions of this research are three-fold:

• firstly, to predict short-term congestion using only traffic images, without requiring other traffic parameters.
• secondly, to introduce a novel spatio-temporal deep learning method to accurately predict traffic congestion up

to 15 minutes in the future.
• finally, to convert the images to GIS data for a wider application of congestion maps in congestion analysis.

The rest of this paper is organized as follows. Section 2 reviews current short-term prediction method and deep
learning methods related to this research. Section 3 presents our approach of congestion prediction. Section 4 discusses
our experiments in San Fransisco . Concluding remarks and discussions are described in Section 5.

2. Related work

2.1. Spatio-temporal traffic prediction with deep learning

The patterns in traffic prediction can be divided into three categories (Zhang et al. (2017)): 1) Spatial relations: the
traffic performance, for example traffic flow, is affected by the nearby regions, more than the remote areas. 2) Temporal
relations: traffic performance is also related to near time and far in the future. Traffic flow will change gradually in
continuous time and also shows periodic patterns. The morning and afternoon peak hours may appear similar patterns
on weekdays. 3) External features: Some external factors, such as weather conditions and road works will affect the
traffic performance.

The general procedures of spatio-temporal traffic prediction using deep learning is to first extract the patterns, then
relate the features to the traffic parameters we intend to predict. Deep learning methods have been applied to ex-
tract different features depending on the characteristics of the neural network. Typically convolutional neural network
(CNN) is used to extract spatial features and recurrent neural network (RNN) is used to extract temporal features.
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Convolutional neural networks use convolutional operators to learn image features and can preserve the spatial rela-
tions between pixels, achieving remarkable performance on image recognition (Krizhevsky et al. (2012)). Different
structures of CNN have been applied, for example standard CNN (Wu and Tan (2016); Ke et al. (2017); Zhang et al.
(2017)), graph CNN (Yu et al. (2017)). Recurrent neural networks are good at handling temporal tasks because they
recurrently calculate each element of time series data and memorize the captured information. Gated residual unit
(GRU) (Li et al. (2018b)) and long short-term memory (LSTM) (Yu et al. (2017); Wu and Tan (2016)) are two special
categories of RNN, which both can learn long-term temporal dependencies. While GRU has two gates (update and
reset) and LSTM has three gates (forget, input and output), LSTM has more parameters than GRU and show better
performance on big volume of data.

There are different ways of relating the features extracted to the traffic parameter we intend to predict. Some works
concatenate the features first and then build a regression model to predict, for example linear regression (Wu and Tan
(2016)), logistic regression (Lv et al. (2015)), support vector machine (Li et al. (2018a)) and random forest (Ke et al.
(2017)). Other works feed the spatial features directly to recurrent neural network (RNN) and a fully-connected layer
is added to generate the final prediction result. ConvLSTM (Xingjian et al. (2015)) is a promising structure that can
learn spatial and temporal dependencies simultaneously.

2.2. Video sequence prediction

Video sequence prediction can be divided into two tasks: high-level semantic prediction and pixel-level predic-
tionVillegas et al. (2017). High level semantics refer to action, event and motion. Forecasting semantics describes
what will happen and provides basis for decision-making. The training for semantic prediction tasks requires a large
amount of training data, which involves a tremendous manual labeling work. In contrast, pixel-level prediction (also
called frame prediction) provides a dense and direct description of the world. Spatio-temporal correlations in videos
provide a self-supervision for frame prediction, which enables purely unsupervised training of a model by observing
raw video frames.

3. Methodology

Figure 1 shows the primary steps of our approach. First, we collect the traffic maps every 5 minutes covering
the afternoon peak hours for three years based on Google Map API. Second data preprocessing is required to reduce
the computational cost of the subsequent processes. The procedures include removing background and gridding the
images. Third, we feed the data to the ConvLSTM network to capture spatial and temporal relations between the
map images and generate the predicted frames. Then a map is reconstructed by merging the grids and overlaying the
basemap. Finally, we vectorize the maps to refine the prediction result and also for further congestion analysis.

Fig. 1. Prediction procedures
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3.1. Collection of traffic congestion maps

The dataset of congestion maps used in this paper is collected by Google Maps API. The Google Maps JavaScript
API provides access to real-time traffic information using the TrafficLayer object, which can be overlaid on a base
map. Traffic congestion is divided into four levels, from slow to fast. Traffic information is refreshed frequently so
through rapid consecutive requests for the same area we can retrieve the congestion maps at predefined time intervals.
A program based on Javascript was developed to automatically run the capture of Google maps with traffic layers
every 5 minutes. The congestion maps were saved using the capture times as the file name so that later analysis can
recognize the time sequences.

3.2. Preprocessing the maps

Since the aim of this research is to predict the congestion of the roads, other land areas are not of interests. Therefore
we extracted the regions of interest by comparing the base maps with congestion maps and finding the difference of
these two images, which is our target road area. Another reason for this step is to save the computing resources by
excluding the useless pixels from the calculation. As millions of parameters are calculated in deep learning, in order
to save computing resources, the maps are dividing into small grids. Based on our experiment, 40*40 pixels grids are
the most appropriate image size to be feed into the network.

3.3. Prediction by ConvLSTM

We use the convLSTM network, which extends the fully connected LSTM layer to have convolutional structures in
both the input-to-state and state-to-state transitions, so that it can learn spatial and temporal relations at the same time
(Xingjian et al. (2015)). The convLSTM network applied in this research is composed of four ConvLSTM2D layers
and one Conv3D layer, as illustrated in Figure 2. The structure is implemented in Keras with Tensorflow backend
(Chollet et al. (2015)). The ConvLSTM2D layer is similar to an LSTM layer, but the input transformations and
recurrent transformations are both convolutional. The Batchnormalization layers normalize the values of the previous
layer at each batch and apply a transformation that maintains the mean activation close to 0 and the activation standard
deviation close to 1. The last Conv3D layer creates a 3D convolution kernel convolved with the layer input over the
temporal dimension to produce time series outputs.

ConvLSTM2D: 3*3 kernel, 40 filters  

BatchNormalization

Input (40*40*1)

ConvLSTM2D: 3*3 kernel, 40 filters  

BatchNormalization

ConvLSTM2D: 3*3 kernel, 40 filters  

BatchNormalization

ConvLSTM2D: 3*3 kernel, 40 filters  

BatchNormalization

Conv3D: 3*3*3 kernel, 1 filters  

Output (40*40*1)

Fig. 2. ConvLSTM structure
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3.4. Reconstructing congestion maps

Reconstructing congestion maps is composed of two steps: merging the grids and overlaying basemaps. As men-
tioned above, the maps are divided into small grids, so we need to merge multiple image grids to a whole map. After
obtaining the future congestion maps over the regions of interest, we overlay these maps on the base map, which we
used in the second step, so that we can generate the final complete congestion maps.

3.5. Vectorizing maps for congestion analysis

GIS data with accurate geographic locations and attributes can provide a rich source of information for traffic
congestion studies such as travel times and delays, congestion levels, and energy emissions (Taylor et al. (2000)). In
order to conduct further analysis, we convert the raster congestion maps to GIS data by retrieving the congestion level
of each road segment and assigning the values to the attribute of GIS road objects. Another benefit of this procedure
is to deal with the inherently blurry problem of video prediction (Mathieu et al. (2015)). After converting to GIS data,
we assign one congestion value to each road segment, which can guarantee that each road segments can have only one
congestion level thus improving the accuracy of pixel prediction.

4. Experiments

4.1. Test area

An experiment was conducted to evaluate the performance of the method in predicting congestion maps over a
study area, as shown in Figure 3 . We chose freeway I80-E in San Francisco County, from Highway 101 to the
Treasure Island portion of the Bay Bridge, which is the most congested segment in San Francisco during afternoon
peak hours on weekdays. We record congestion maps from 14 October 2014 to 4 Feb 2018 along freeway from 19:00
- 20:00 pm on weekdays covering 3 years. We collected 12 frames of size 240*240 pixels per day and a total of 10,392
frames in 866 days, excluding the days that were missing data.

Table 1 shows the basic information of Freeway I80 eastbound. The total length of this road segment is 8.69
kilometers. This road segment is a 5-lane road, which is 17.98 meters width and each lane is 3.60 meters width.

Fig. 3. Freeway I80-E in San Francisco County as test area, which is the most congested segment in San Francisco

Table 1. Road segment information
Name Freeway I80-E
Length 8.69 km

Road Width 17.98 m
Lane Width 3.60 m
No. of Lanes 5
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4.2. Evaluation

We measure the accuracy of the prediction by calculating the percentage of correctly predicted pixels in the road
region. As Figure 4 and Table 2 shows, the accuracy of prediction is above 80% in the first 5 minutes but it declines
over time. As there is no standard to define a satisfactory level of accuracy, in this research we assume that a prediction
accuracy of 80% is acceptable, which means that in this experiment the prediction accuracy is acceptable within 15
minutes (3 frames). And the accuracy can also be highly enhanced by vectorizing the maps, which we can observe
from Table 2 that the accuracy can be improved up to 15% .

Fig. 4. Accuracy of each predicted frame before and after refinement

Table 2. The accuracy at different time intervals
Accuracy 5 mins 10 mins 15 mins 20 mins

Before vectorization 81.4 75.5 68.6 40.2
After vectorization 88.1 83.2 79.9 55.3

4.3. Congestion length calculation

After converting the raster maps to georeferenced maps, we conduct congestion analysis based on the GIS data.
The length of traffic congestion is a typical variable showing the present state of congestion, which is defined as the
total length of road segments with congestion level above a certain threshold, as shown in Figure 5 in red and brown
color. We filter the roads with high congestion level (red and brown colors) and obtain the length attribute of the
filtered road, and finally summarize the length value to get the congestion length of the whole road segment. As it can
be observed in Figure 5 that the congestion length decreases after 19:00 pm but decreases after 19:20 with 19:30 pm
being the most congested time after 19:00 pm.

5. Conclusion

In this paper, we applied deep learning method to the challenging problem of short-term congestion prediction,
which so far has not been studied from an image analysis perspective based on open source congestion maps. We for-
mulate congestion prediction as a spatio-temporal sequence forecasting problem and introduce convLSTM structure
to tackle the problem. The advantage of our approach is that unlike the previous methods that involve the laborious
work of fusing many traffic parameters, our method requires only historical congestion maps for congestion analysis.
Based on our experiment on the most congested road segment of San Francisco, this framework can predict 15 min-
utes ahead with an acceptable accuracy. For the future work, we will investigate how to apply convLSTM to crowd
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Fig. 5. (a) Congestion length of one road, the total of red and brown parts; (b) Congestion length by time.

congestion prediction in transportation hubs, which is quite similar to traffic congestion prediction problem that has
spatio-temporal characteristics.
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