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Abstract 

More accurate density estimation techniques are needed to effectively utilize data from alternate sources of traffic data 

such as probe vehicles, which do not depend on expensive and invasive infrastructure such as loop detectors. From 

previous experiments, we found that traffic density estimation using probes has an issue of overestimation of traffic 

densities when traffic is in transition (periods from free-flow to congestion and vice versa). This pattern of 

overestimation exhibits certain correlations, and at the same time is highly non-linear in nature by time. Closed-form 

analytical tools used in previous research are incapable of dealing with these complex non-linearities, justifying the 

use of high-order machine learning algorithms. We propose an algorithm to tackle the nonlinearity of traffic flow 

according to time and time-lag characteristics. Our research employs LSTM neural network to estimate traffic density 

by utilizing data gathered from sensor equipped vehicles and road geometry. We evaluated our proposed method by 

using a microscopic simulation program (PARAMICS).  100 days of one peak hour traffic data are generated in the 

simulation and the dataset is divided into training set and test set. These experiments confirm that our proposed model 

outperforms the previous model and efficiently solves the overestimation problem in traffic transition period.  
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1. Introduction 

Estimating traffic density is of critical importance in understanding current traffic conditions and predicting future 

traffic congestion conditions. Developing vehicle sensing technologies and the concept of “Internet of things” give 

many opportunities to measure traffic density more accurately. Traffic density estimation using sensor equipped 

probes is emerging as a valuable tool in research and practice (Herring et al. 2010, Seo and Kusakabe, 2015, Seo et 

al. 2015, Al-sobky and Mousa 2016, and Nam et al. 2017). This is apparent when we consider the fact that modern 

cars are now being equipped with advanced on-vehicle sensors. These sensors can be camera-vision, lidar and radar, 

which were originally installed for Advanced Driver Assistance Systems (ADAS). The number of vehicles equipped 

with these advanced functionalities will significantly increase in the near future, specifically with the emergence of 

autonomous vehicles. A side benefit of these technological advancements is that we can now have a sufficient number 

of vehicles traveling on the road at any given time to obtain a large amount of sensor data which can then be harnessed 

to get much improved estimates of traffic densities. Nam et al. (2017) propose the Simulation-based TRaffic density 

Estimation AlgorithM (STREAM) that applies Edie’s definition in order to utilize data from sensor-equipped vehicles 

to estimates traffic density. Although STREAM yielded highly accurate estimation results, simulation analysis also 

opened further lines of inquiry. The primary issue is overestimation of traffic densities when traffic is in transition 

(periods from free-flow to congestion and vice versa). 

Methodologies using probe vehicles suffer from a few limitations, which merit further research. Although a 

probe vehicle can capture traffic states during stationary traffic conditions such as non-congested and fully congested 

conditions, it is vulnerable during flow transition periods. Specifically, the performance deteriorates during the onset 

of congestion and queue-clearing conditions, in comparison with its performance in other states. Figure 1 shows a 

simplified illustration of overestimated traffic density during the onset of congestion, when a simple local density 

estimation algorithm is applied.  The number of cars on the road section can be suitably thought of as a proxy for road 

density. The purple vehicles indicate probes, each having a sensing area shown in blue. Faster-moving and slower-

moving vehicles are depicted in green and red, respectively. Depending on the sensor positions, the congestion build-

up or clearing conditions can move through the sensing zone and cause a time-lag effect. A simple algorithm will 

naturally capture travel hours and travel distances of all vehicles in the sensing area of the probe vehicles to calculate 

densities, but during times of congestion there is a greater proportion of slower vehicles in the sensing area in each 

time step, which can cause oversampling. This oversampling of slower moving vehicles from time step to time step 

can lead to overestimation of traffic density. To correct for this overestimation, the algorithm needs a certain time-

step to time-step memory.  Moreover, sensing areas from different probe vehicles tend to overlap in these conditions, 

which can also add to the overestimation.  In this paper, we describe a scheme using Long Short-Term Memory 

(LSTM) neural networks that overcomes this problem. 

 



Nam et al./ Transportation Research Procedia 00 (2018) 000–000  3 

 

 

Figure 1. Overestimation pattern in time of onset of congestion  

 

2. STREAM-LSTM Model   

Traffic dynamics are highly non-linear, and traffic dynamics in transitional periods even more so. The combination of 

non-linearity with a large amount of data to be analysed leads us to propose Machine Learning (ML) algorithms as 

appropriate tools to identify these patterns. ML algorithms excel in extracting relationships between different variables 

in large datasets. In this research study, the data to be analysed are a fusion of probe vehicle data and road geometry 

data. This fusion is not trivial, as we need to formulate innovative ways to combine these disparate sources of data.  

The capabilities of Deep Learning algorithms are increasingly being recognized in the fields of traffic 

estimation and prediction (Ma et al. 2015, Tian and Pan, 2015, Polson and Sokolov, 2016). One common conclusion 

that has emerged in the field of traffic flow prediction is that deep learning methods are successfully able to point out 

nonlinearity of traffic flow according to time and time-lag characteristics, and that deep learning algorithms can 

accurately predict traffic fundamentals.  LSTM is a scheme within the broad category of deep learning methods. 

Figure 2 shows the conceptual framework of the proposed LSTM network.  Hereinafter, we will call the proposed 

model as STREAM-LSTM (Simulation-based TRaffic density Estimation AlgorithM-Long-Short Term Memory).  A 

traffic management center collects various pieces of information from probes passing a road section every 0.5 seconds 

and stores the data in a moving horizon window vector of n time steps. In this study, we set the moving horizon to be 

5 time steps. Actual traffic density of a road section can be determined only with the traffic pattern seen in the whole 

time horizon. This implies that traffic density is highly affected by prior traffic conditions that are captured by sensor 

probes. We call this pattern a “Sensor Signature”. The LSTM network recognises the current signature and previous 

time step’s layer pattern. The advantage of employing LSTM networks in this context is that they do not suffer from 

the well-known “vanishing gradient” problem.  Simply stated, this means that they can consider not only very recent 

prior conditions but also relatively longer prior conditions, just as the phrase “Long Short-Term memory” implies. 

This property becomes crucial in probe vehicle-based traffic density estimation to avoid the problem shown in Figure 

1.  
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Figure 2 Design of LSTM for signature data from sensor equipped vehicles 

 

This model can take multiple features as input variables from sensor probes as shown in Figure 3. The input 

layer at time t (𝑖𝑡) consists of an input vector (𝑥𝑡), a hidden vector of previous time step (ℎ𝑡−1), weights for the two 

vectors, and a bias 𝑏𝑖.  To reflect time-relevant characteristics in the data, this model uses a “forget layer” and a “cell 

state layer” to store temporal information which is the output of neuron states in the previous time step. Forget layer 

f is called a transfer function that is determined to be forgotten or alive from the previous states by cell state layer. If 

the states do not affect the current output values, the cell state layer decides to not use the forget layer. The function 

can take any form such as linear, sigmoid, tanh, or ReLU. From each neuron state, density is estimated by Equation 

(3) 

 

𝑖𝑡 = σ𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)       Eq (1) 

𝑓𝑡 =  σ𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)      Eq (2) 

𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑖° σ𝑐(𝑊𝐶𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)     Eq (3) 

�̂�(𝑡) = 𝑓(∑ 𝑤𝑖𝑛𝑖(𝑡) + 𝑏)𝐼
𝑖        Eq (4) 

 

𝑤ℎ𝑒𝑟𝑒  
𝑥𝑡:  Input vector 

ŷt:  Estimated output 

σℎ , σ𝑦: Activation function 

𝑊ℎ, 𝑈ℎ: Weights of a layer h (it plays a role in connecting perceptrons among layers) 

𝑏ℎ: Bias vector 
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Figure 3. Input-output variables and LSTM network design 

3. Data Description 

The deep neural network model has a mechanism of probabilistic learning methods that incorporate the 

uncertainty of numerous factors such as parameter, network structure, input data and actual value (y). Learning and 

prediction can be regarded as a form of inference. This means that as more datasets are trained, the model would get 

more accurate until a certain ceiling is reached. In other words, the deep neural network model can learn various traffic 

situations from the large datasets available to it as input.  

The developed simulation can generate multiple scenarios by changing a random seed number. Given a network 

and OD demands, a random seed number determines all stochastic decisions taking place in the simulation 

environment, such as vehicle departure time in origin, lane change/ acceleration/ deceleration behaviours and vehicle 

composition. In this research, we developed a python batch programming module to automatically generate 100 

sample scenarios, implying 100 days of a peak hour, by controlling the PARAMICS Processor.      

Furthermore, the mechanism of Deep learning has various random terms. Each output of the STREAM-LSTM 

model could be slightly different across multiple trials. We randomly divide the samples into 70 days for training and 

30 days for evaluation. 

After multiple experiments, we select the input variables that are known to have an effect on traffic density. First 

of all, we consider travel speed of a sensor vehicle. We refer to the well-known Edie’s definition that traffic density 

is a function of vehicle travel time over a time-space domain.  As can be seen in the Figure 4, the traffic pattern in 
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non-congested conditions is significantly different from that in congested conditions. With this insight, we categorize 

the traffic condition into the two regimes and calculate the variables (VHT, VMT, Sensor time space domain) in each 

traffic regime. We set the congestion criterion of the expressway in this research to 80 km/hour. 

 
 

Figure 4 Vehicle trajectory variation according to the congestion level 

4. Evaluation 

We evaluated our proposed method by using a microscopic simulation program (PARAMICS).  The testbed for 

our evaluation is a simple traffic network shown in Figure 5, hereafter called toy network. This network contains one 

single stretch of freeway, with 3 lanes, and one origin-destination pair. For our study, congestion is artificially induced 

in the network by dropping the number of lanes abruptly from 3 lanes on Link13 to 2 lanes on its immediate 

downstream Link11. The entire simulation period is set to be 1.5 hours, out of which the first 0.25 hours and the last 

0.25 hours are discarded due to the peculiarities of the simulation software where we have previously observed erratic 

vehicle behaviour around the boundary conditions (beginning and end of the simulation). The period of evaluation is 

set to be the middle 1 hour. 

 
Figure 5 The overview of Toy Network 

 

Target link
Link  13
Length      : 355m
# of Lane  :  3 

Link  15
Length: 1000m
# of Lane  :  3 

Link  17
Length : 1500m
# of Lane  :  1 

Capacity : 1800 vehicles/lane

General Information

Road Type : Highway

Link  7
Length      : 590m
# of Lane  :  3 

Link  9
Length      : 610m
# of Lane  :  3 

Freeflow spd : 100 km/h



Nam et al./ Transportation Research Procedia 00 (2018) 000–000  7 

 

Table 4.1 and Table 4.2 indicate the sensor configuration in the simulation and evaluation configuration 

respectively. 

Table 1 Sensor configuration  

Sensor Code Name Target Angle Range Distance 

1 Front Long 0 10 30 

2 Front Short 0 60 10 

3 Rear Left 160 40 10 

4 Rear Right 200 40 10 

5 Rear Center 180 20 20 

 

Table 2 Configuration for Density Estimation  

Type Name Configuration 

Simulation 

Simulation time 1.5 hours 

Warm up time First 0.25 hour 

Analysis time 1 hour 

Updating time step of simulation 0.1 second 

Vehicle compositions 
- Sensor vehicle 

- Regular vehicle 

Generated samples 100 days of morning peaks 

Density Estimation 

Updating time step 30 seconds 

Congestion criteria 80 km/hour 

Size of the moving horizon 5 time step ( 2 min 30 sec) 

Dataset composition 
Training : 70 days 

Test : 30 days 
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These datasets contain information collected by the probe vehicles and have both static (link geometry) and 

dynamic (vehicle sensed, link flow, etc.) information. The training dataset is used to by the model to build relationships 

between link density and probe data. The trained model is then deployed on the test data to evaluate its accuracy. This 

procedure is repeated for different market penetration ratios. 

The performance of the STREAM-LSTM method is compared with that of a density estimation method of 

STREAM which does not employ a memory scheme to correct for oversampling. As expected, STREAM tends to 

estimate traffic density poorly at the onset of congestion and during queue clearing conditions.  

Detailed results are shown in Table 3 and Figure 6. The proposed methodology shows an improvement over 

STREAM. Moreover, its performance gets better as the penetration rate increases, with an almost 45% improvement 

in RMSE and 66% improvement in Relate Error in the 25% market penetration scenario. As shown in Figure 6, 

STREAM tends to estimate traffic density poorly at the onset of congestion and during queue clearing conditions. Our 

method accurately estimates traffic density in Free-flow, Transition, and Congested conditions. During the Queue 

clearing conditions, the LSTM method finds the actual density faster than STREAM, although it still overestimates 

density in comparison with its performance in all other traffic conditions. 

 

Table 3. Evaluation for the proposed method: Numerical Results 

Penetration rate 
RMSE Relative Error 

STREAM-LSTM STREAM Improvement (%) STREAM-LSTM STREAM Improvement (%) 

1% 32.69 49.15 33.50 0.36 0.50 27.80 

5% 14.08 16.29 13.54 0.18 0.30 40.14 

10% 12.12 15.69 22.74 0.15 0.30 49.68 

25% 8.88 15.97 44.36 0.11 0.34 66.11 

 

 

  

Figure 6 Comparison of results of the density estimation methods 
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5. Conclusion 

In this research, we propose an STREAM-LSTM approach which is a non-parametric method to estimate traffic 

density. This research was partially motivated by our previous work on probe-based traffic estimation research 

(STREAM, Nam et al., 2017), in which we identified that a method without proper corrections using observation 

memory can have a tendency to overestimate density in certain traffic conditions. Our evaluation results indicate that 

the proposed method has better performance than previous methods, and shows significant improvement over 

STREAM in all market penetration scenarios. This is because our proposed method fully utilizes the signature of 

multiple information gathered from multiple sensor equipped probes.    

Our model accurately estimates traffic density in Free-flow, Transition, and Congested conditions. Although 

overestimation still remains a problem in the Queue clearing condition, the STREAM-LSTM method converges to 

the actual density faster than STREAM. The primary reason for this performance is that LSTM Neural Networks can 

efficiently memorize the relationship between the signature and time-lag characteristics of traffic densities.  

Current efforts are underway to improve the performance of our algorithm even further. It is evident that, in a 

transportation network, the traffic flow characteristics on any link influence the traffic characteristics on nearby links. 

Therefore, it stands to reason that if we formulate these relationships between links and present them as additional 

input data to our LTSM model, its accuracy can be expected to improve.  
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