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Abstract 

The bike-sharing service has brought many conveniences to citizens and served as an effective supplement to the mass transit 

system. For docked bike-sharing service, each docking station has the designated location to store bikes and the station could be 

empty or saturated in different times. Bike-sharing operators generally redistribute bikes between stations by driving trucks 

according to their experiences which might lead unnecessary human resources It is ineffective for the operators and inconvenient 

for users to access this service. Therefore, predicting an accurate number of available bikes in the stations is important for both the 

operators and users. This paper mainly focuses on the short-term forecasting for docking station usage in a case of Suzhou, China. 

Two latest and highly efficient models here, LSTM and GRU, are adopted to predict the short-term available number of bikes in 

docking stations with one-month historical data. Random Forest is used to compare as a benchmark. The results show that both 

RNNs (LSTM and GRU) and Random Forest able to achieve good performance with acceptable error and comparative accuracies.  

Random forest is more advantageous in terms of training time while LSTM with complex structures can predict better for the long 

term. The maximum difference between the real data and the predicted value is only 1 or 2 bikes, which supports the developed 

models are practically ready to use. 
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1. Introduction 

The rapid development of mobile and internet technology creates many opportunities for the shared economy. Bike-

sharing has recently become one of the most popular forms of the shared economy. The bike-sharing service is widely 

accepted and enjoyed in many major cities all around the world. These bikes have brought much convenience for the 

short trips, reduced greenhouse gas emission, and encouraged bike users to embrace a healthy way to exercise. The 

sharing service offers in two different ways; one is the docked bike-sharing and the other is dockless bike-sharing. 

While the dockless bike-sharing program has brought many issues such as abandoning bikes, blocking the pedestrian 

space, and poor management, the docked bike-sharing program has become more popular.  

However, it is not easy to manage these bikes in an efficient way. Since the capacity of docking stations limit the 

number of bikes for borrowing and returning, bike stations can be empty or saturated at a certain period. In order to 

address this issue, bikes are manually rebalanced by trucks with an arbitrary timetable (for example, twice a day at 

about 8:00 am and 23:00 pm in the city like Suzhou, China). Due to the unbalanced distribution in the number of bikes 

at docking stations, these resources cannot be fully utilized. It needs a better way of managing the bikes, therefore, 

this paper aims to utilize advanced prediction models for better bike-sharing management. 

Short-term traffic forecasting is an important research topic in ITS, which can be applied to predict traffic indicators 

such as traffic flow, delay, speed, travel time, etc. The methodologies in this area can be categorized into three types: 

statistics, non-linear theories and machine learning (Gang et al., 2016, Vlahogianni et al., 2004). Wang (2016) 

compared the regional bike rental demand prediction results by using several models in machine learning and found 

that NN-based and tree-based models can reach most high prediction accuracy.  

The increasing number of research outcomes in recent years show that machine learning leads the state-of-the-art 

results for short-term forecasting problems, and they also keen to more adaptiveness with data fusion problem (Zhang 

et al., 2017, Almannaa et al., 2018). In the past decades, many studies have tried conducting bike related forecasting 

using different types of prediction models. The study of Singhvi et al. (2015) presents a log-log regression model to 

predict the bike usage pattern of morning peak hours in New York City. Taxi usage, weather, and spatial factors were 

also considered to improve the accuracy.   

Gradient Boosting Regression Tree (GBRT) was adopted to predict the total number of the bike usage and a multi-

similarity-based inference model was applied to predict the usage of each station cluster, which pre-produced by a 

bipartite clustering algorithm Li et al. (2015). DeepST (a multi-layer CNN model) was developed to predict the short-

term NYC bike usage in grids of the city Zhang et al. (2016). The grids like pixels in a photo as input were trained 

from different time periods with CNN model and external factors. Additionally, other studies have proposed 

mathematic models for demand and rental analysis or planning of bike systems (Xu et al., 2012, Wang, 2016). Since 

the previous studies in general make macroscopical predictions of the bike-sharing systems, the forecasting for the 

station-level needs to be investigated. Therefore, in this study, and neural networks and tree-based models are tested, 

and their results are compared for forecasting station-level availability of bike-sharing. 

2. Methodology 

2.1. Data collection 

The docking bike-sharing system in Suzhou, China is chosen as a study case. This system is also known as Suzhou 

Youon Public Bicycle Systems offering over 46,000 bikes with 2,000 docking stations across the city. Different novel 

short-term traffic forecasting models were developed on top of the Suzhou bike-sharing dataset and the features of 

these models were discussed. 

2.2. Data Description 

The number of available bikes for all stations are collected and stored in the server in every minute. Each record 

contains station ID, the number of available bikes, and the timestamp. We randomly select 3 stations; station 628, 635 

and 648 for this forecasting research. Each station has a maximum of 40 docking spots. Borrowing or returning bikes 

changes the available bikes from these stations. If the number is close to zero, it means nearly no bikes in the station 
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for borrowing. On the contrary, the larger the number is, the more available bikes are in the station, but the less space 

for returning bikes. 

 

 

Fig. 2. Locations of the stations.  

The locations are shown in Fig. 2. There are many commercial and residential areas, offices, and university 

campuses around the bike stations. The activities generated from these areas lead to a high potential bike usage. The 

main users of the bikes could be students, residents and company staff. Also, there is a metro line (the red line in Fig. 

2) below the station 628 and 648), which deduce metro commuters to take up a large part of the total bike usages.  

The dataset starting from 9th June and ending on 11th July, 2017. As a result, there are 45,950 observation data for 

each station. The raw data is split into a preset time interval (5 or 10 minutes) with different predicted requirements. 

For instance, each time-step will take the average value of 5 continuous 1-minute raw data if the time interval is 5 

minutes. Under this condition, the whole data would contain 9,190 records with 5-minute interval and 4595 records 

with 10-minute interval. For each subset, the paper will always use 95% of all the records as training set and the 

remaining 5% for the testing set. In both two sets, the inputs length changes with different experiments and the output 

would always be one time interval. 

 

2.3. Models 

A series of fixed-length time sequences is selected as basic training and testing data. As shown in Fig. 3, 𝑡 stands 

for current time-step and the numbers in the boxes means the observed values of available bikes. The values of 

continuous several time-steps in time sequence are arranged as input dataset. The next time-step 𝑡 + 1 will be predicted 

as output through the models.  

9 9 8 7 10 9

t-4 t-3 t-2 t-1 t t+1

Number of available bikes

Inputs by time sequence Output  

Fig. 3. Graphical Concepts of Inputs and Output. 

 

(1) Random Forest.  

Random forest (Breiman, 2001) was first introduced by Breiman in 2001 and it is a combination of multiple 

classifications and regression tree. The main idea of this algorithm is using bagging method to gather number of 

multiple weak learning units and then calculate the ensemble result. Compared with the traditional bagging method 

(Breiman, 1996), the random forest adds some random progress during the process of training. Random forest is easy 

to apply and the requirement of computational resources is relatively low.  
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(2) LSTM (Long short-term memory neural networks) 

LSTM is a variation of recurrent neural networks for the time series prediction (Hochreiter and Schmidhuber, 1997). 

As shown in the Fig. 4. (a), the LSTM cell can hold and update a state during the training process. Thus, the model 

makes a prediction with the previous learning experience. The mathematical expressions can be denoted as 

𝑓𝑡 = (𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡) (1) 

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝐶𝑡̃ = tanh(𝑊𝐶 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙𝐶𝑡̃ (4) 

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝐶𝑡) (6) 

where 𝑡 is the current step, 𝑥 is the input, 𝑜 is the output, 𝑊 is the weight matrix, 𝑏 is the bias. 𝑓𝑡, 𝑖𝑡, 𝐶𝑡 and ℎ𝑡 are 

intermediate variables, which decide to remember or forget the input data (Olah, 2015).  

Two LSTM layers are used in this paper and the output layer would make final regression results. Fig. 4. (b) shows 

the basic structure of the model as well as the running steps of the LSTM cells. When the continuous input values flow 

in the LSTM cell, it would unfold and handle these values by a sequence as Fig. 4. (c). After the last one is finished, 

the cell would make an output result for the next layer.   

(3) GRU (Gated Recurrent Unit) 

GRU was introduced in 2014 (Cho et al., 2014). It is an improved recurrent neural network based on LSTM. It 

merges the input part and forgetting part together so the number of the gates from 4 becomes 3. As a result, GRU saves 

more computational resources than LSTM with similar performance. To compare the difference between LSTM and 

GRU, we use same network structure as LSTM in figure 3 (b). The main expressions can be indicated by following 

formulas (Olah, 2015). 

𝑧𝑡 = σ(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡]) (7) 

𝑟𝑡 = σ(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡]) (8) 

ℎ𝑡̃ = tanh(𝑊[𝑟𝑡 ⊙ℎ𝑡−1, 𝑥𝑡]) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ𝑡̃ (10) 
(4) Evaluation 

This article selects mean square error (MSE), mean absolute error (MAE) and Mean absolute percentage error 

(MAPE) to measure the performance of the different models. They are denoted by 

MSE =
1

𝑁
⁡∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

(11) 

MAE =
1

𝑁
⁡∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

(12) 

MAPE =
1

𝑁
⁡∑

|𝑦𝑖 − 𝑦𝑖̂|

𝑦𝑖

𝑁

𝑖=1

(13) 

where N is the number of testing sample, 𝑦 is the real data and 𝑦̂ is the corresponding prediction. In this article, the 

mean absolute error means the average difference between real available bikes and the predictive one in a station.  

3. Results 

3.1. Training Time Comparison 

The LSTM and GRU run on top of Keras and Tensorflow with GPUs. We use Scikit-learn and CPU to build and 

test random forest. Neural networks need a number of training epochs to adjust the weights in the model. We select 
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25 as the number of epochs because the performance becomes stable after 25 times. Each estimator means one sub-

tree in the random forest, and 1000 estimators would reach a stable outcome for this forecasting problem. 

Table 2. Average training times of the models. 

Time 

Interval 

Sequence 

Length 

Training Time (s) - 

25 epochs 

Training Time (s) - 

1000 estimators 

LSTM GRU RF 

1 

5 45.83  37.59  5.31  

10 78.15  61.58  13.62  

20 143.42  109.05  36.78  

30 210.45  160.81  64.77  

5 

5 14.50  12.08  2.56  

10 20.81  16.90  4.35  

20 34.47  26.22  8.75  

30 47.81  37.37  13.71  

10 

5 10.82  6.46  1.87  

10 13.84  7.45  2.93  

20 20.97  9.68  5.32  

30 28.19  11.73  7.69  

 

Table 2 shows the training time comparison with different scenarios. The longer time interval or sequence length, 

the longer training time for all models. GRU requires less training time than LSTM because it holds only 3 gates in its 

structure, which means that fewer computation effort is required. For the random forest, the number of estimators 

means the number of decision trees. It takes more training time when increasing the sample size. Although it runs with 

CPU, the real training time is much shorter than RNNs, which means it can be practical to implement in the real 

project. 

3.2. Predictions 

After each training step, the corresponding testing sets are estimated by the model. As an example, we randomly 

select only 50 testing samples from each testing group for visualization. Fig. 5. shows the part of predicted results with 

10-mins time interval by using three models. The main findings are listed as follows. As a whole, all models show 

good predictions with some variations. The detailed observations from the results are following; 

 

- LSTM, GRU and Random Forest follows the trends very well. The difference between the real data and 

predicted data is less than 1 or 2 bikes. It is good enough to help develop the bike-sharing management based 

on these predictions; 

- The accuracies between the three predictions are very comparative; 

- LSTM and GRU get similar trends in most of the cases because they have similar model structures; 

- When the time interval is short, random forest gets a better performance; 

- By increasing the sequence length, the fluctuation of three predictions is decreased.  
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Fig. 5. Predicted available bikes of testing stations. 



 Bo Wang and Inhi Kim / Transportation Research Procedia 00 (2018) 000–000  7 

To describe the relationship between model performance and time interval and sequence length, we plot nine 3D 

graphs to show the change of evaluation metrics among three stations.  

 

 

Fig. 6.  Performance of models by time interval and sequence length. 

The time interval only has three different levels: 1min, 5mins, and 10mins. The reason we choose these 3-time 

intervals is that in most case, people can access a station within 10 mins in Suzhou. Additionally, metro passengers 

can check the bike availability on mobile devices in the future when they are about to get off the metro. The sequence 

length has four different levels: 5, 10, 20, and 30. As a result, the lines in the graphs are not smooth but broken lines. 

The main features of these graphs are listed as follows. 

- The MSE of RF is very good when the time interval is short but with the increase of the time interval, RF 

gets worse performance than other two. The memory unit in the RNN may help with long interval 

sequence; 

- Generally, these three models get quite similar results. However, the blue line always higher than others in 

the graph of GRU and Random Forest, which means station 628 gets worse results than those two models. 

Since 628 station has the larger usage amount, the variation may be higher than others; 

- All lines get higher with the increase of the time interval. There are two potential reasons may cause this 

problem. One is that forecasting long time interval is harder. The other one is that the sample size is 

dramatically decreased when expanding the interval so that the accuracy is affected; 

- Different sequence lengths do not change much performance but sequence lengths affect the results gently 

and the longer one leads to a better performance in most cases. 
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4. Conclusion and discussion 

Short-term traffic forecast plays a significant role in operating traffic management in ITS. An accurate forecast can 

act as guidance for commuters to better arrange their departure time, commuting modes, and commuting routes. Also, 

it is beneficial to the shared-bike service provider in terms of arranging bike delivery schedule and bike distribution. 

This paper focuses on short-term traffic forecast on the available number of bikes of the shared-bike stations using 

machine learning techniques. Three short-term traffic forecast methods are proposed to make the prediction of 

available bikes, including LSTM, GRU, and RF. MSE, MAE, and MAPE are chosen as criteria to evaluate the 

performance of the three models. According to the predicted results, the three models all work well in the short-term 

forecast of the number of available bikes. Firstly, random forest works marginally better than others when the time 

interval is short. Secondly, the results from LSTM and GRU are quite similar on predicted behaviors but GRU has 

more accurate results and faster training time than LSTM. Finally, due to the short training time and no complicated 

hyper-parameter setting, the random forest needs fewer computation resources and it is easier for training. 

Since the output data (predicted results) in this paper only has one time-step, the multiple time steps need to be 

conducted. This paper does not include other factors that can influence the bike usages such as weather (temperature, 

air quality and dry/wet), day of the week, time of the day, and special events (school holiday, sports/entertainment 

events, and road construction). Since research on RNN has developed exponentially in last few years, it is worthwhile 

implementing several variations on the basic RNN structure. Furthermore, the optimal model structures, sequence 

length, the time interval for better prediction are required for further research. 
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