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Abstract 

The study addresses the needs of detection and description of abnormal traffic patterns in large transportation networks formed due 

to the presence of unexpected disruptions, such as natural or manmade disasters. In order to take into account complex 

spatiotemporal structure of traffic dynamics and preserve multi-mode correlations, tensor-based traffic data representation is put 

forward. Further, with the reasonable assumptions on normal or expected traffic dynamics to exhibit similar periodic structure, the 

problem of abnormal or unexpected traffic patterns detection is treated as a low-rank modeling problem. More precisely, tensor 

robust principal component analysis is applied for the purpose of discovering distinctive normal and abnormal traffic patterns. For 

the validation purposes, continuum modeling approach is employed to emulate traffic dynamics, with consideration of the effect 

of aforementioned disruptions. The results suggested the applicability of proposed approach in order to extract abnormal traffic 

patterns in large transportation networks. 
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1. Introduction 

Comprehensive analysis and proper description of traffic dynamics in large transportation networks are indeed a 

complicated procedures, yet necessary for many areas of transportation research. The situation is becoming even more 

challenging, considering the existence of unexpected disruptions, such as natural or manmade disasters. These 

disasters have a disruptive effect on traffic conditions and typically result in formation of abnormal traffic patterns. 

Among different methods proposed to analyze and extract meaningful information about aforementioned abnormal 

traffic patterns, a considerable amount utilizes statistical techniques with either temporal or spatial information 

regarding traffic flows. However, the traffic dynamics in large transportation networks usually exhibit complex 

spatiotemporal structure, which is one of the key obstacles on the way to their analysis. Therefore, spatiotemporal 

dependencies have to be modeled carefully and be considered simultaneously. This aspect was highlighted in lesser 

number of studies, for instance in Rempe et al. (2016) and Li et al. (2013), yet claimed to be an essential component 

for accurate description of traffic patterns.  

The issue of accurate modeling of complex spatiotemporal dependencies is closely related to the mathematical tools 

used for analysis. For instance, methods relying on matrix-based traffic data representation are not capable of handling 

dependencies along more than two modes of traffic data simultaneously. Therefore, the dependencies, for example, 

only along one spatial and one temporal mode (Goulart et al., 2017) could be simultaneously taken into account. In 

order to overcome this issue and take into account dependencies along larger number of modes, other mathematical 

tools than matrices have to be used. 

One of the possible solutions is utilization of tensor-based techniques. Tensors, being a higher order generalization 

of such mathematical objects as scalars, vectors and matrices were recently introduced to transportation domain. 

Tensor-based methods operate with multi-way matrices in order to capture underlying multi-mode structure of traffic 

dynamics (Ran et al., 2016). This feature of tensors, namely the ability to capture and preserve multi-mode correlations 

appeared to be important for such applications as imputation of missing traffic data obtained from sensors (Ran et al., 

2016; Chen et al., 2018) and analysis of traffic dynamics in large-scale urban areas (Han et al., 2016).  

In current study, the problem of abnormal traffic pattern extraction in large transportation networks is considered. 

In order to take into account complex spatiotemporal structure of traffic dynamics, aforementioned tensor-based traffic 

data representation is adopted first. Further, with the reasonable assumptions that traffic conditions and therefore 

normal traffic patterns have spatiotemporal correlations and demonstrate similar periodic structure (i.e. similar day-

to-day dynamics inside a particular urban region), the problem of abnormal traffic pattern extraction is solved with the 

help of tensor robust principal component analysis. More precisely, it is assumed that the real-world observations of 

traffic dynamics could be decomposed into so-called low-rank and sparse components. The low-rank component 

contains the information about expected or normal traffic patterns. On the other hand, the sparse component depicts 

unexpected or abnormal traffic patterns. This decomposition into low-rank and sparse components is formulated as an 

optimization problem first, and further solved with the help of Augmented Lagrangian Method. This approach is 

capable to separate normal and abnormal traffic patterns in a robust way, taking into account the possibility of existence 

of grossly corrupted observations (non-Gaussian noise) in traffic data.  

In order to validate aforementioned tensor-based abnormal traffic pattern extraction approach, the simulation of 

traffic dynamics under different normal and abnormal conditions had been conducted. More precisely, in current study 

the continuum modeling approach, extensively studied by Du et al. (2013), Xia and Wong (2009), Jiang et al. (2009) 

and others had been adapted. According to this continuum modeling approach, real road network with complex 

topology is viewed as a continuum, with travelers able to travel freely in two dimensional space. This transition from 

the discrete representation, where each road link in a network is a subject for a separate analysis, allow to easier the 

problem connected with the presence of enormous number of variables and parameters, and becoming important to 

examine the performance of proposed tensor-based approach. 

The remainder of this paper is organized as follow. Notations on tensors and formulation of tensor robust principal 

component analysis for abnormal traffic pattern extraction are explained in section 2. Continuum modeling approach 

and the application of proposed methodology to simulated data are described in section 3. The last section is devoted 

to the conclusion. 
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2. Tensor-based abnormal traffic pattern extraction 

2.1. Notations on tensors 

In current subsection mathematical notations on tensors and key definitions used throughout the paper are explained 

and mainly adopted from Kolda and Bader (2009). Tensor is a multidimensional array, higher order generalization of 

such mathematical objects as scalars (0𝑡ℎ-order tensor), vectors (1𝑠𝑡-order tensor) and matrices (2𝑛𝑑-order tensor). 

An 𝑁𝑡ℎ-order tensor is denoted with boldface Euler script letter, e.g. 𝓧. Vectors and matrices are denoted with 

boldface lowercase, e.g. 𝒙, and boldface capital, e.g. 𝑿, letters respectively. An element of 𝑁𝑡ℎ-order tensor 𝓧 ∈
ℝ𝐼1×𝐼2×…×𝐼𝑁  is a scalar, denoted by 𝑋𝑖1𝑖2…𝑖𝑁

. Mathematical operations of addition and subtraction for tensors are 

defined elementwise, in similar manner as for vectors and matrices. The inner product of two tensors  𝓧, 𝓨 ∈
ℝ𝐼1×𝐼2×…×𝐼𝑁 is defined as follows  

〈𝓧, 𝓨〉 = ∑ ∑ … ∑ 𝑋𝑖1𝑖2…𝑖𝑁
𝑌𝑖1𝑖2…𝑖𝑁

𝐼𝑁
𝑖𝑁=1

𝐼2
𝑖2=1

𝐼1
𝑖1=1                                                     (1)  

In order to be able to transform tensor into a matrix representation, the process called matricization or unfolding is 

introduced as following. Tensor n-mode matricization of 𝑁𝑡ℎ-order tensor 𝓧 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  is a matrix 𝑋[𝑛] formed 

by mapping from tensor element (𝑖1, 𝑖2, … , 𝑖𝑁) to a matrix element (𝑖𝑛 , 𝑗), with    

𝑗 = 1 + ∑ (𝑖𝑘 − 1)𝐽𝑘
𝑁
𝑘=1
𝑘≠𝑛

  𝑎𝑛𝑑   𝐽𝑘 = ∏ 𝐼𝑚
𝑘−1
𝑚=1
𝑚≠𝑛

                                                    (2)  

The rank of a tensor 𝓧 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁, denoted by 𝑟𝑎𝑛𝑘(𝓧), is the smallest positive integer M, for which 𝓧 could 

be written as a sum of M rank-1 tensors (vectors) as follows 

𝓧 = ∑ 𝑟𝑚1 ∘ 𝑟𝑚2
𝑀
𝑚=1 ∘ … ∘ 𝑟𝑚𝑁                                                                       (3)  

This definition of tensor rank is known to be an NP-hard computational problem, therefore for many applications so-

called tensor n-rank, which in fact a rank of n-mode unfolding, is used 

𝑟𝑎𝑛𝑘𝑛(𝓧) = 𝑟𝑎𝑛𝑘(𝑿[𝑛])                                                                            (4) 

In similar way as for matrices, tensor 𝑙𝑝-norm of 𝑁𝑡ℎ-order tensor 𝓧 is introduced and defined as follows 

‖ 𝓧‖𝑝 = (∑ ∑ … ∑ |𝑋𝑖1𝑖2…𝑖𝑁
|

𝑝𝐼𝑁
𝑖𝑁=1

𝐼2
𝑖2=1

𝐼1
𝑖1=1 )

1

𝑝                                                         (5)  

2.2. Tensor robust principal component analysis 

As it was mentioned in introductory part, tensor-based traffic data representation allow to capture underlying multi-

mode structure of traffic dynamics and preserve multi-mode correlations. In order to take into account spatiotemporal 

correlations and similar periodic structure of traffic dynamics (i.e. similar day-to-day dynamics inside a particular 

urban region), a 3rd order tensor  𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3  with one spatial dimension (𝐼1 ) and two temporal dimensions 

(𝐼2 and 𝐼3) is constructed. The spatial dimension (𝐼1) corresponds to a particular location inside urban area. Two 

temporal dimensions (𝐼2 and 𝐼3) correspond to time interval within a day and the day respectively. At this point the 

precise type of traffic data is not specified, however it possibly could be such indicators as traffic speed, flow rate or 

vehicles density. More importantly that constructed tensor 𝓧 contains the information regarding normal and abnormal 

traffic patterns, which are the subject to be distinguished. In current study it is assumed that normal or expected traffic 

patterns exhibit similar periodic structure (i.e. day-to-day dynamics inside a particular urban region), so that have so-

called low-rank structure. More precisely, this low-rank assumption comes from the fact that day-wise observations 

of traffic dynamics within particular urban area appear to be similar or correlated to a certain degree. Therefore, these 

observations are expected to have much fewer degree of freedom than observations of traffic dynamics in an arbitrary 
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regions. Additionally, it is assumed that abnormal or unexpected traffic patterns do not occur very often, and therefore 

have so-called sparse structure.  

Mathematically this could be formulated as following. Given traffic data tensor 𝓧 is a subject to be decomposed 

into low-rank  𝓨 and a sparse 𝓩 components. The sparse tensor 𝓩 contain the information regarding abnormal traffic 

patterns. The formulation as an optimization problem is as follows 

min
𝓨,𝓩

𝑟𝑎𝑛𝑘(𝓨) + 𝜆‖𝓩‖0     𝑠. 𝑡.     𝓧 = 𝓨 +  𝓩                                                         (6)  

It has been highlighted in previous subsection that estimation the rank of a tensor is known to be an NP-hard 

computational problem, therefore optimization problem (6) in current formulation is intractable. To overcome this 

issue appropriate relaxation is needed to be done. To accomplish this, the following procedure, following the style in 

Xue et al. (2017) is considered. Firstly, the rank of a tensor 𝑟𝑎𝑛𝑘(𝓨) is substituted by the convex combination of all 

n-ranks, defined by (4). Secondly, all these n-ranks and 𝑙0-norm in (6) are replaced with their convex envelopes. These 

convex envelopes are nuclear ‖𝒀[𝑖]‖∗
 and 𝑙1 -norm for 𝑟𝑎𝑛𝑘( 𝑌[𝑖])  and 𝑙0 -norm respectively. This leads to the 

following reformulation of original optimization problem (6) as a robust principal component analysis 

min
𝓨,𝓩

∑ 𝛼𝑖‖𝒀[𝑖]‖∗

3
𝑖=1 + 𝜆‖𝓩‖1     𝑠. 𝑡.     𝓧 = 𝓨 +  𝓩                                                    (7)  

Need to mention that positive regularization parameter 𝜆 in equations (6) and (7) above determines how sparse the 

component 𝓩  will be. For a larger 𝜆 the optimal solution will contain a sparser 𝓩 and a less low-rank 𝓨. On the other 

hand, a smaller 𝜆 will result to a denser 𝓩 and a lower-rank 𝓨. The value of this regularization parameter needs to be 

tuned to each particular data. The optimization problem (7) is further solved with the help of the method of Augmented 

Lagrange Multipliers (ALM), described in details in Goldfarb et al. (2014). As a result, two tensors 𝓨 and 𝓩, which 

are of size as the original tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3  are obtained. Tensor 𝓨 contains the information regarding normal or 

expected traffic patterns. On the other hand, tensor 𝓩 contains the information regarding abnormal traffic patterns. In 

following section proposed tensor-based approach is validated via applying to simulated data in order to extract 

abnormal traffic patterns.  

3. Continuum modeling of traffic flow  

3.1. Model description 

One of the major problems with modeling of traffic dynamics in large transportation networks is connected with 

the fact that existing conventional models such as link-and-node-based traffic flow models could hardly be applicable 

due to the existence of large number of parameters and variables, as well as significant computational efforts (Sossoe 

et al., 2015). As one of the possible solutions, recently, so-called continuum modeling approach has been introduced. 

According to this continuum modeling approach, road network within urban area is assumed to be dense and viewed 

as a continuum in which travelers can travel in two-dimensional space. This allow to focus on the overall behavior of 

travelers at the macroscopic level, rather than model and analyze each road link separately. Therefore, less amount of 

data is required for the model and the problem size could be reduced even in case of large and dense transportation 

networks (Long et al., 2017).    

In current study the model proposed by Long et al. (2017) and Du et al. (2013) is adapted. Firstly, the variables, 

key definitions and governing equations of original model are explained. Secondly, since the emphasis in current study 

is placed on abnormal traffic patterns, this continuum-based model of traffic dynamics is supplemented by introduction 

of so-called disruption field. This disruption field emulates real-world natural or manmade disaster and assumed to be 

a scalar field with variable parameters, such as intensity and localization. 

Mathematically, two-dimensional region 𝛺 with outer boundary 𝜕𝛺 is considered. The travelers are continuously 

located along (𝑥, 𝑦) ∈ 𝛺. Following the original model, several variables are introduced 
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 𝜌(𝑥, 𝑦, 𝑡): density of travellers at location (𝑥, 𝑦) at time t with condition on 𝜌(𝑥, 𝑦, 𝑡) = 0   ∀(𝑥, 𝑦) ∈ 𝜕𝛺 

(travelers are not allowed to leave 𝛺). 

 𝑞(𝑥, 𝑦, 𝑡): travel demand at location (𝑥, 𝑦) at time t. 

 𝐯(𝑥, 𝑦, 𝑡) = (𝑣1(𝑥, 𝑦, 𝑡), 𝑣2(𝑥, 𝑦, 𝑡)): velocity vector at location (𝑥, 𝑦) at time t, with 𝑣1(𝑥, 𝑦, 𝑡), 𝑣2(𝑥, 𝑦, 𝑡) 

are X-axis and Y-axis velocity vector components respectively.  

 𝐅(𝑥, 𝑦, 𝑡) = (𝐹1(𝑥, 𝑦, 𝑡), 𝐹2(𝑥, 𝑦, 𝑡)) : flow vector at location (𝑥, 𝑦) at time t, defined as 𝐅 = 𝜌𝐯 , with 

𝐹1(𝑥, 𝑦, 𝑡), 𝐹2(𝑥, 𝑦, 𝑡) are X-axis and Y-axis flow vector components respectively. 

 𝑐(𝑥, 𝑦, 𝑡) : local travel cost per unit distance of travel experienced by travellers. 

 

Regarding the governing equations, the traffic flow is treated as a compressible fluid with following conservation law 

    𝜌𝑡(𝑥, 𝑦, 𝑡) + 𝛻𝑭(𝑥, 𝑦, 𝑡) = 𝑞(𝑥, 𝑦, 𝑡)     ∀(𝑥, 𝑦) ∈ 𝛺   ∀𝑡 ∈ 𝑇                                              (8)  

Further, it is assumed that travelers are traveling towards the destination 𝐷 ⊂ 𝛺. In order to describe the decision 

making process of travelers, following the original model, so-called instantaneous travel cost potential 𝜑(𝑥, 𝑦, 𝑡) is 

introduced. This cost potential depicts the total travel cost for travelers who depart from location (𝑥, 𝑦) at time t to 

travel to the destination. As in original model, it is assumed that 𝜑(𝑥, 𝑦, 𝑡) = 0 at destination and that this cost 

potential is related to local travel cost as |𝛻𝜑(𝑥, 𝑦, 𝑡)| = 𝑐(𝑥, 𝑦, 𝑡). Moreover, assuming that travelers choose a path 

that minimizes their travel cost to the destination, this instantaneous travel cost potential is governed by the equation 

𝑐(𝑥, 𝑦, 𝑡)
𝑭(𝑥,𝑦,𝑡)

|𝑭(𝑥,𝑦,𝑡)|
+ 𝛻𝜑(𝑥, 𝑦, 𝑡) = 0                                                                     (9)  

Moreover, in order to emulate the influence of unexpected disruptions, such as natural or manmade disasters, on traffic 

dynamics, the disruption field is introduced as following. It is assumed that Greenshields’s speed-density relationship 

holds and the aforementioned disruptions lead to capacity reduction. Mathematically, the disruption is assumed to be 

a scalar field with variable intensity parameter 𝛾(𝑥, 𝑦, 𝑡) ∈ [0,1], described as follows 

𝑈(𝑥, 𝑦, 𝑡) = 𝑈𝑓(𝑥, 𝑦) (1 −
𝜌(𝑥,𝑦,𝑡)

(1−𝛼1𝛾(𝑥,𝑦,𝑡))𝜌𝑗𝑎𝑚(𝑥,𝑦)
)                                                          (10)  

Where traffic speed 𝑈(𝑥, 𝑦, 𝑡) = ‖𝐯(𝑥, 𝑦, 𝑡)‖ is equal to the absolute value of velocity vector; 𝑈𝑓(𝑥, 𝑦) and 𝜌𝑗𝑎𝑚(𝑥, 𝑦) 

are free-flow speed and jam density at particular location  (𝑥, 𝑦)  respectively. The detailed description of 

aforementioned continuum model could be found in Du et al. (2013).    

3.2. Numerical experiment  

Simulation has been conducted in order to validate the proposed tensor-based abnormal traffic pattern extraction 

method. The simulation setup is the following. We consider a square domain of 1 unit length with travel demand 

Fig. 1. Simulation domain of 1 square unit length; destination location and the distances to destination (left). Mesh-

wise simulation domain separation and numeration of mesh cells (right). 
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accumulating inside. The travelers are traveling towards the rectangular destination on the left in accordance with 

continuum-based model described in previous subsection, in particular choosing direction of movement using 

equation (9). Further, this square domain is divided into 25 uniform mesh cells and the average speed inside each 

mesh cell is calculated. This simulation setup is depicted on the Fig. 1.  

The detailed description and stability analysis of numerical solutions is out of scope of this paper, however, it is 

worth to mention that simulation domain in Fig.1 was first overlaid by a grid with 0.01 spacing. Further, the solution 

of conservation law (8) is obtained with the help of two-dimensional extension of Lax-Wendroff scheme, which is 

second-order accurate in both space and time. Temporal resolution has been chosen in accordance with the Courant–

Friedrichs–Lewy (CFL) condition. Additionally, in order to solve boundary value Eikonal-type 

equation |𝛻𝜑(𝑥, 𝑦, 𝑡)| = 𝑐(𝑥, 𝑦, 𝑡), fast marching method is utilized. The details of numerical schemes could be found 

in Warming et al. (1974) and Chopp (2002). 

Constructed mesh-wise average speed map was further converted into a tensor-based representation. For this 

purpose the following procedure was considered. We construct a 3rd order tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3  with one spatial 

dimension (𝐼1) and two temporal dimensions (𝐼2 and 𝐼3). The spatial dimension (𝐼1) is of size 25 and corresponds to 

mesh cells. Two temporal dimensions (𝐼2 and 𝐼3) are of size (10 and 9) and correspond to number of time intervals 

within a simulation trial and the number of trials respectively. Data transformation procedure is shown on the Fig.2.  

Each of the simulation trials could be thought as evolution of traffic dynamics within one day. In order to investigate 

the applicability of proposed tensor-based abnormal traffic pattern extraction method, during one of these simulation 

trials the intensity of disruption field 𝛾(𝑥, 𝑦, 𝑡) was set greater than zero in a randomly chosen sub region inside 

simulation domain, shown on a Fig.3 (left). Further, tensor robust principal component analysis, described in 

subsection 2.2, was applied to decompose tensor 𝓧 into low-rank  𝓨 and a sparse 𝓩 components.   

By analyzing the trial-wise slices of tensor 𝓩 it was further observed that all the slices except the one during which 

the intensity of disruption field was greater than zero contains zero entries. On the other hand, the slice which 

corresponds to the trial with anomalous pattern is significantly different. This slice is shown on a Fig.3 (right). From 

this figure one could observe that the abnormal pattern formed due to the presence of disruption field is noticeable 

and the mesh cells affected by aforementioned disruption could be correctly identified. The brighter colors on a Fig.3 

correspond to the higher values of speed drop (in percentage to the normal conditions). Therefore, the abnormal traffic 

Fig. 2. Mesh-wise average speed map during one trial (left) with numeration according to Fig1. 

Constructed tensor (right). Colored arrows depict transformation process. 
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pattern was correctly identified with the help of proposed tensor-based approach. These results suggests the 

applicability of proposed method in order to extract abnormal traffic patterns.       

 

 

Regarding the possible limitations of proposed tensor-based approach, the following has been observed during the 

simulation. Motivated by the intention of making simulation scenarios closer to real-life situations, an artificial 

Gaussian noise had been added in order to emulate observation errors. Under these conditions, the performance of 

proposed tensor-based approach was slightly declining in case of decreasing of the disruption intensity. This is due to 

the fact that the influence of disruption to traffic dynamics could be nullified by the fact of presence of aforementioned 

noise. Nevertheless, more careful analysis is needed to identify the threshold of applicability of proposed approach. 

4. Conclusion  

This study is devoted to the problem of abnormal traffic pattern extraction in large transportation networks, formed 

due to the influence of unexpected disruptions, such as natural or manmade disasters. In order to achieve this goal, the 

following procedure has been proposed. First, in order to take into account complex spatiotemporal structure of traffic 

dynamics, tensor-based traffic data representation is put forward. Secondly, with the reasonable assumptions on 

normal or expected traffic dynamics to exhibit similar periodic structure, the problem of abnormal or unexpected 

traffic patterns detection is treated as a low-rank modeling problem. More precisely, tensor robust principal component 

analysis has been applied for the purpose of discovering distinctive normal and abnormal traffic patterns. For the 

validation purposes, continuum modeling approach was employed to emulate large-scale traffic dynamics, with 

consideration of the effect of aforementioned disruptions. The results suggested the applicability of proposed approach 

in order to extract abnormal traffic patterns in large transportation networks. However, despite the promising results, 

additional examination of proposed methodology on real traffic data is necessary and is the subject for further studies. 
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