論文 屈曲した狭小空間における流体の微速浸透現象の可視化

岡崎 慎一郎^{*1}·藤原 広季^{*2}·氏家 勲^{*3}·門田 章宏^{*4}

要旨:ひび割れ内部のような屈曲した空間での水の透過機構の詳細解明には、狭小空間における非常に遅い 流れの様相を可視化する必要がある。本研究では、これまで可視化が困難であった極めて低速度の透水現象 を、レイノルズの相似法則に着目し流体の種類(水と多孔質粒子、水とインク、および空気と線香の煙)と流速 および、模擬ひび割れの幅を変化させた実験により、視化できる可能性を見いだした.また、模擬ひび割れ 内の狭小空間における流れの様相を分析することにより、屈曲部における特徴的な流れの発達を確認した。 キーワード:ひび割れ、透水、屈曲、可視化

1. はじめに

鉄筋コンクリート部材にひび割れが発生すると,水分 や塩化物イオンなどの物質の浸透が容易となり,鋼材腐 食を促進させる。鋼材腐食に至るまでの時刻を精度よく 推定するためには,ひび割れ中の物質移動現象を把握し, 現象を適切に説明できる数理モデルを将来予測解析に適 した形式で立脚することが肝要である。

ひび割れ内部における空間は、複雑に屈曲しているた め、この場における物質移動現象は、屈曲構造の影響を 強く受ける。例えば液状水の場合、屈曲による流路長の 増大、屈曲構造による渦の形成などの影響を受けること により、平行平板間での単純な空間における流れとは極 めてその様相が異なっている。従来のひび割れ漏水モデ ルにおいては、平行平板における流れをベースとしてモ デル化しているため、実測値との乖離が大きく、また予 測のための補正式を提案しているものの、研究者によっ て大きく異なる現状がある。

ここで,著者のひとりである氏家ら¹⁾は単一亀裂を有 する円柱供試体の透気試験結果から,流体の摩擦損失係 数とレイノルズ数の関係が理論値から乖離することを見 いだし,この乖離の原因は,ひび割れ内部に形成されて いる流路の幅がひび割れ幅よりも小さいことによるとの 推察を行っている。単一亀裂における伊藤らの実験結果 ²⁾と,平行平板間中の遅い流れの理論値を比較すると, 理論値は常に実験値を過大評価しているため,文献1)の 示唆はこの結果によっても支持されるものである。

さらに著者ら³⁰の検討により,ひび割れのような屈曲 した流路において流れは必ずしも流路に沿ったものでは なく,実質の流路と称すべき領域を透過している場合が 存在しうるとの着想を3次元数値解析結果(図-1)から得 ているが,ひび割れ内部の流れの様相を観察することは

*1 愛媛大学 大学院理工学研究科助教 博(工) (正会員)
*2 愛媛大学 大学院理工学研究科
*3 愛媛大学 大学院理工学研究科教授 博(工) (正会員)
*4 愛媛大学 大学院理工学研究科准教授

困難なため、ひび割れ幅と、流路幅の相違に関する実証 には未だ至っていない。

流路幅に関する問題のほかに,ひび割れ中の流体の速 度や流量を支配する圧力勾配を増加させた場合において は,平行平板間の流れにおいては圧力勾配に比例して流 量が増加するのに対して,ひび割れのような屈曲した場 では,圧力勾配の増加に対し,上に凸の曲線を描きなが ら非線形に流量が増加することが確認されている。この 要因としては,乱れ,摩擦損失,形状損失による運動エ ネルギー逸散の影響が示唆されているが,流路幅の問題 と同様にひび割れ内部の流れを把握できないため,メカ ニズムの詳細解明には至っていない。

以上,ひび割れを透過する物質移動現象においては, 実質の流路幅など流路に関して不明な点があること,さ らには,圧力勾配の変化に伴う運動エネルギー逸散と流 量の関係に関して不明な点が存在している。

そこで本研究では,屈曲した狭小空間における,微速 浸透流の流れの可視化と,流れの様相の分析を行い,上 述の不明な点の解明の一助となる知見を見いだす。

図-1 屈曲路における流れの速度分布(解析値, 流路幅 1cm, 流入口圧力 0.8MPa, 流出口 0MPa)

2. 微速透水現象の再現と問題点

2.1 実験装置

狭小空間における微速透水現象の可視化のため,図-2 に示す装置の適用性について検討した。狭小区間の再現 には、後述の PIV 撮影のための十分な可視性を確保する ために、アクリル製の素材を採用した。図-3に示す寸法 となるように4枚のアクリル板を接着剤の使用により組 み合わせ, 平行平板間の狭小空間を再現した。さらに, ひび割れの内部構造のように屈曲した流路の再現のため に、5mmの振幅、35mmの周期となる sin カーブを流下 方向に描くように加工したアクリル製の板を2枚向かい 合わせることにより, 屈曲した流路を再現した。実際の ひび割れでは、上述のような10mm 流路幅は、ひび割れ として極めて大きいものに分類されるものの、本実験の 位置づけとしては、屈曲した流路における微速浸透流の 様相や、渦の形成の可視化に主眼を置いている. そのた め, 10mm より狭いひび割れであっても, 拡大視すれば 流れの速度は10mmの場合とは異なるであろうが、流れ^{40mm} や渦の形成の様相や渦の形成には大きな相違はないであ ろうことから、本研究では図-3に示すアクリル板の寸法 でひび割れ内部の流れに関する議論が可能であると判断 している。

流れの可視化には、PIV システムを導入した。ここで、 PIV システムとは、流れに多数のトレーサー粒子を注入 し、流れを可視化する手法である。粒子運動が流体の挙 動を代表しているとみなし、粒子移動をビデオカメラで 捉えることにより、流れの局所的な運動を粒子の追跡に より可視化するのが本手法の原理である。PIV 撮影のた めには、流体中に微粒子などのトレーサーを混入させる 必要がある。本研究では、水理実験で広く使用されてい る多孔質粒子(M 社製,粒度分布は150µm 以上15%以下、 150-63µm70%以下、63µm 未満 20%以下)を採用した。

これをあらかじめ流入口に連結している貯槽内の水 に混入させておき、定水位透水実験時に、流れに伴って 平板間へ透過する仕組みにした。貯層内の水頭の設定値 は、狭小空間の比較的遅い流れの再現を目標として 10cm とし、後述するレイノルズ数 Re が狭小空間中でおよそ 100 程度となるように設定した。

2.2 実験結果

実験の結果,以下のことが判明した。空間中において は、トレーサー粒子の振る舞いを観察すると、局所的に 速度は異なる様相であった。流れはおよそ秒速10~20cm といった極めて遅い流れであるために、トレーサーの局 所的な偏りが著しく、さらには粒子同士の物理的に干渉 していることが確認されたため、粒子の運動の様相が流 れのそれを代表しているとはいえず、正確な流れの把握 に至らなかった。さらに、透水時間の増加に伴い、アク

図-2 微速透水試験装置

図-3 アクリル供試体(左:平行平板間の流路, 右:屈曲流路)

リル板へのトレーサー粒子の付着がみられ,さらなる時 間経過で,付着したトレーサー粒子に他の粒子が吸着す ることによりクラスターを形成し,流れを変化させるこ とや,透明アクリル板にトレーサーが付着することで, ビデオカメラで撮影を妨げることが確認された。

次に、粒子状のトレーサーを使用する替わりに、市販 の赤色水性インクを使用した。流れに混ざり合わない状 態では、流れに乗ったインクが流線を描くため、この状 態がトレーサーとしての役割を果たすためである。しか しながら、狭小空間における微速な流れではインクの移 流よりも拡散が卓越し、狭小空間を透過してすぐにイン クがほぼ完全に水に溶解することでトレーサーとしての 役割をインクが果たさないことが確認された。そのため、 水を用いた流れの様相の可視化計測を断念した。

3. 相似則を利用した微速浸透現象の再現

3.1 概要

狭小空間における液状水の微速浸透流を可視化するこ とは、一般の PIV 計測に用いられるトレーサーが本試験 体に適用できないことが原因で、計測が困難であること が前節での検討によって判明した。この問題は、例えば インクの場合は、流体の速度を大きくすれば、インクが

図-4 相似法則(左右で物体の大きさが異なるが レイノルズ数が同じであれば力学的に相似である)

水に溶解するまでに流れが供試体を透過しきるために, 解決される性質のものである。そこで,流れに関する相 似則を水に適用し,流体の動粘性係数を上げる,つまり 流体を空気とすることで,速度の大きい流れでありなが ら流れの様相を水とは変化させないようにすることで, PIV 計測を可能にできることが種々の検討により判明し た。以下,相似則に関する説明と,流体として空気を採 用した経緯について述べる。

3.2 レイノルズの相似則⁴⁾

流体の流れに物体をおいたとき,その物体に作用する カや運動は,慣性力,圧力,粘性力の3つの力で決定さ れる。流れと物体の境界の形が相似である2つの流れが 存在するとき,以下の式(1)で示されるレイノルズ数が等 しいならば,物体の大きさや流体の種類が異なっていて も,これら2つの流れは力学的に相似である(図-4),と いうレイノルズの相似法則が成立する。

$$Re = \frac{慣性力}{粘性力} = \frac{LU}{\nu}$$
(1)

ここに, Re: レイノルズ数, L: 物体の代表長さ,U: 流体の速度, v: 動粘性係数である。本実験内容において, 流れが壁面に作用する力, もしくは壁面から受ける流体 への力を, 力学的相似を確保したまま速度を大きくする ためには,水の動粘性係数を増加させるとよいのである。

PIV 測定が可能となるためには、流体の速度を少なく とも5倍以上増加させなくてはならないことが予備実験 により確認された。流体として水を使用することを前提 とするならば、流体の粘性を5倍以上増加させるために は、著しい量の増粘剤を試験のたびに水に添加させる必 要があり、準備のために著しい手間を要することが予想 された。そこで、水と比較して動粘性係数を7倍程度有 する、空気を流体として採用することとした。水と空気 の粘性係数を両者で比較すると、20°Cにおいては、水の 場合は1.01(mPa·sec)、空気の場合は1.81×10⁻²(mPa·sec) となり、水に比べ空気の粘性は非常に低い。しかしなが ら、粘性係数を流体の密度で除した動粘性係数は、水は 1.01×10⁻²(cm²/sec)、空気は1.50×10⁻¹ (cm²/sec)となり、

図-5 空気を用いた微速透過試験装置の概要(上図:概要,下図:実物の写真)

動粘性の観点では、空気のほうが、粘性が大きいのであ る。なお、トレーサーには、風洞実験で一般に使用され ている、線香の煙を採用した。事前の予備実験により、 線香の煙はトレーサーとして十分に機能していることを 確認している。

4. 空気を利用した微速浸透現象の可視化

4.1 実験装置

実験装置の概要を図-5 に示す。狭小空間の再現には, 図-3 で説明した 2 種の供試体を実験に使用する。図中に 示した位置に可変速ファンを設置し,ファンによる空気 の吸入により流路に空気の流れを発生させた。流路での 空気の流入口からの圧力損失や渦の形成の影響を可能な 限り小さくするため,流入口に堰を設置している。トレ ーサーとなる煙は,流入口付近に設置した線香に火を点 火させることで発生させた。線香の煙の可視性を確保す るため,本試験は暗室で実施し,かつ測定領域にのみ照 明を当てている。実験ケースについては,平行平板間の 流路では平板の間隔を 5mm,屈曲流路では 5mm, 10mm とし,流路間の速度はおよそ 100mm/sec 程度となるよう にファンを調整した。撮影する CCD カメラには, Imperx 社製を採用しており, 100 枚/sec のピッチで 10 秒間撮影 を行った。

図-6 幅 10mmの平行平板間での空気の流れ(下図は上図の 0.05sec 後の様相を示す)

4.2 実験結果

はじめに,流路幅が10mmの平行平板間の流れに関す る結果を示す。カメラにより撮影された,ある時刻のス ナップショットを,その0.5秒後の結果と併せて図-6に 示す。なお,流下方向は左から右に向かう方向である。 0.5秒間の線香の煙の形状を比較すると,壁面付近の煙の 動きよりも,壁面間の中心部の動きが卓越していること が確認され,平行平板間の層流解であるハーゲン=ポア ズイユ流れ⁴⁾が達成されていることが確認される。つま り,本試験システムは流体流れを再現する実験として妥 当なものであるといえる。

次に,流路幅が 5mm の屈曲流路に関する結果を示す。 カメラにより撮影された,ある時刻のスナップショット を,その 0.05 秒後の結果と併せて図-7 に示す。平行平板 間の流れと同様に,壁面付近の煙の動きと比較して壁面 間中心部の動きが卓越しており,流れとしては屈曲流路 に沿った層流が形成されていることが確認される。

続いて,流路幅が10mmの屈曲流路に関する結果を示 す。カメラにより撮影された,ある時刻のスナップショ ットを,その0.05秒後の結果と併せて図-8に示す。これ までの結果とは様相が異なっており,流路の屈曲部にお いて渦の形成が確認される。さらには,流れは流路に沿 ってはおらず,実質の流路と称すべき流域に流れが卓越 しており,その領域ではない部分に渦が発達しているこ とが確認される。

この結果と併せて流路幅が 5mm の場合の結果を鑑み ると、流路幅が、比較的小さい場合には屈曲におよそ沿 うような層流が達成されるが、ひび割れ幅を増加させ、 ある閾値を超えると屈曲に沿わない流れが卓越し始める 可能性があることが、本実験により示唆されたといえる。

5. 実質の流路の特徴

実質の流路が形成される条件について検討を行う。流

路幅が 10mm の屈曲流路に関し, 実質の流路幅は約 5mm である。ここに、白色の円状の枠で囲まれた実質の流路 領域に着目すると、この部分は壁面と壁面に挟まれてい ることが確認される。壁面間距離は、本原稿紙面縦方向 では 10mm であるが, 壁面の法線方向にはおよそ 5mm であり、実質の流路幅とほぼ等しい(図-9)。また、図-7 に示す流路幅が 5mm での実験結果を再度確認すると, 図を見る限り,壁面法線方向への距離が壁面間距離より 小さいことが確認されるが、およそ屈曲に沿うような流 れを形成している。また、図-7の下図における、「線香 の煙による流線」が指す矢印の、先端部付近の線香の煙 の尖部に着目すると、この部分が流路断面内で最大速度 を示しているのだが、わずかに上方に位置していること が確認できることから, 5mm と設定した流路幅よりも小 さい, 壁面法線方向への距離におよそ等しい実質の流路 幅を形成していることが分かる。

以上の検討結果から,本実験のような周期的に屈曲し た構造を有する流路における流れの,実質の流路幅は, 一方の壁面ともう一方の壁面の間の最小の距離にほぼ等 しくなるであろうことが予想され、少なくとも本実験結 果からは、屈曲した壁面間の法線方向への距離に等しく なるであろうことが示唆されたものと考えている。なお、 例えば幅 10mm の平行平板間に一カ所のみ本実験のよう な屈曲部があったとする場合を考えると、屈曲部での流 れは、上述のような実質の流路を形成しうるが、屈曲部 透過後は、徐々に実質の流路幅が流路幅 10mm の流れに 回復し、流路幅10mmの流れが卓越するものと考えられ ることから、屈曲の存在の周期性も実質の流路幅の検討 には必要となると思われる。しかし、コンクリートひび 割れ内部においては、屈曲構造が頻繁に現れることから、 この場合は壁面と壁面の最小の距離である実質の流路幅 を常に形成していると考えられ、ひび割れからの流量予 測においては、ひび割れ幅ではなく、実質の流路幅を用

図-7 幅 5mmの屈曲流路での空気の流れ(下図は上図の 0.05sec 後の様相を示す)

図-8 幅 10mmの屈曲流路での空気の流れ(下図は上図の 0.05sec 後の様相を示す)

いることが肝要であり,これは既存の研究成果によって 示唆された内容と矛盾しないものである。

6. 渦の形成が流れに与える影響

最後に,渦の形成が流れに与える影響について検討す る。第1章で述べたとおり,屈曲した流路においては, 圧力勾配の増大に対し,流量が非線形に増大することが 確認されている。取得した画像群における煙の移動の様 相から局所的なレイノルズ数を推定すると,最も速度が 大きい部分であっても Re=100 程度であり,層流から乱 流への遷移の目安となる Re=2000 よりも1オーダー程度 小さい。つまり,この渦は局所的な乱れにより形成され たものではなく,定常的に形成される渦であると思われ る。この渦の存在によって,流れの運動エネルギーが逸

図-9 設定した流路幅と実質の流路幅

散され,渦のない流れである平行平板流れを仮定した既 往のモデルでは再現しえない,流量の非線形的増加現象 が起こる場合もあると考えられる。

実際のひび割れ内部は、本実験で設定した流路とは異 なり、複雑に屈曲し、収斂している.本実験結果からた だちに、実際のひび割れ内部においても同様の定常渦が 常に形成しているとは言えないものの、屈曲流路が流体 の水理学的挙動に与える影響は少なからず存在するもの と考えられる。つまり、従来の壁面摩擦および屈曲流路 による影響に加えて、本実験によって存在が示唆された、 実質の流路幅や、定常渦形成による摩擦損失を勘案でき るひび割れ中の透水モデルが、より精密な漏水予測など に重要である可能性があると考えられる。

7. 結論

屈曲した構造を有する場での水の流れを可視化するこ とを主眼とした本研究で,以下のような結論を得た。

- (1) トレーサーを混和させた水を、アクリル素材の板に より再現された狭小空間に透過させた。流れが極め て遅いためにトレーサーが十分に機能せず、PIV 撮影 による可視化が困難であることを確認した。
- (2) レイノルズ則を勘案すると、流体に空気を使用する ことで、系の力学的な相似を保ちつつ、トレーサー が機能するのに十分な流体の速度が得られることが 判明した。
- (3) 平行平板間の流れの流線は,理論的に示される層流 の様相と相違ないことを確認した。

(4) 屈曲した流路においては、設定した流路に沿って必ずしも流体が流れるとは限らず、屈曲した壁面間の最小距離を流路幅とする、実質の流路が形成される. また、設定した流路幅が大きい場合には、屈曲部に 渦の形成を確認することができた。

謝辞

本研究において,相似則の適用を提案いただいた愛媛 大学大学院理工学研究科助教の岩本幸治博士,および, 装置の製作に協力いただいた,愛媛大学工学部の川口隆 氏,十河基介氏に感謝の意を示す。また本研究の一部は, 文部科学省科学研究費若手研究(B)(研究課題番号: 22760331)の助成を受けたものである。感謝の意を示す。

参考文献

- 氏家勲,浅井文貴,佐藤良一:ひび割れ表面粗さと ひび割れ部の透気・透水性に関する研究,コンクリ ート工学年次論文報告集, Vol.21, No.2, pp.841-846, 1999.7
- 伊藤洋,坂口雄彦,西山勝栄,清水昭男:コンクリ ートクラック内の透水性に関する実験的研究,セメ ント技術年報, Vol.41, pp.217-220, 1987.12
- 岡崎慎一郎,平田直矢,氏家勲:コンクリート中の ひび割れの内部構造が透水性に与える影響,コンク リート工学年次論文集, Vol.31, No.1, pp.925-930, 2009
- 4) 禰津家久, 冨永晃宏:水理学, 朝倉書店, 2000